

22 July 2024

EXPLORATION DRILLING RESULTS EXPAND GOLD TARGETS

Drill Results Summary

First pass and concept testing has continued with elevated gold intercepts received from multiple targets within the Company's West Pilbara Gold and Base Metal Project. 19 drill holes for 3,815m were drilled at the Barkley, Dereks Bore, Kens Bore and Cochrane Gold targets. Results received from this round of drilling include (refer Table 2 for full results):

Barkley

- 1m at 0.5 grams per tonne gold from 121m and,
- 7m at 0.5 grams per tonne gold from 125m in 24BKRC001.
- 3m at 0.8 grams per tonne gold from 78m including 1m at 1.3 grams per tonne gold from 78m and,
- 4m at 0.2 grams per tonne gold from 120m and,
- 1m at 2.3 grams per tonne gold from 130m in 24BKRC010.

Kens Bore Gold

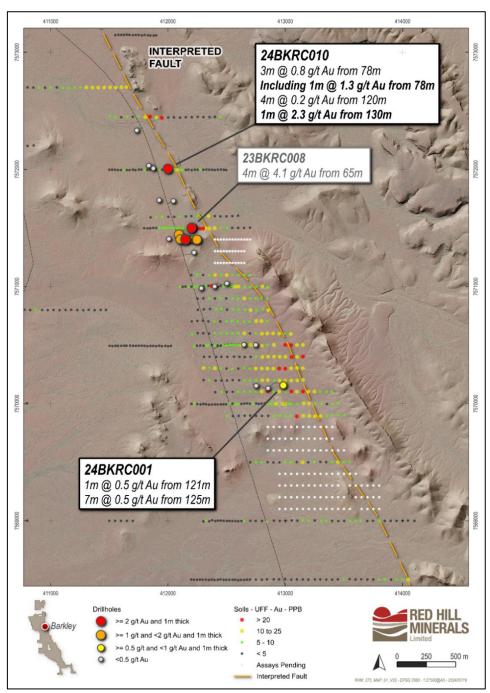
• 5m at 0.7 grams per tonne gold from 73m in **24KNRC003** including 1m at 2.0 grams per tonne gold from 74m.

Dereks Bore

2m at 1.3 grams per tonne gold from 127m in 24DBRC002 including 1m at 2.4 grams per tonne gold from 128m.

Cochrane Gold

• 6m at 0.2 grams per tonne gold from 66m in **24CHRC001**.


Drilling and soil sampling at Barkley has identified that the mineralised system has an approximate strike length of 2.5 kilometres. Additional infill ultrafine fraction (UFF) soil sampling is planned to further refine the interpreted fault system ahead of further drilling.

Red Hill Minerals CEO Michael Wall commented: "We're pleased by these early stage exploration results, as they continue to expand the area of known mineralisation. Drilling and soil sampling at Barkley has identified the targeted structure extends north and south, and the positive results from Kens Bore Gold indicate that mineralisation continues under cover. Our team are already back on the ground conducting additional soil geochemistry and mapping, ahead of heritage surveys and further drilling later in 2024".

Barkley

The Barkley Target is located proximal to the major NW trending Deepdale Fault which separates the stratigraphy of the Hamersley and Ashburton Basins. During May 2024 an 11 hole, 2,434m RC program was completed testing over 2.5 km of strike to the north and south of previous drilling results⁽¹⁾ which included 4m at 4.1 grams per tonne gold from 65m in 23BKRC008.

The 2024 drilling program was designed to step out along strike, targeting an interpreted gold and pathfinder trend within UFF soil sampling data. Elevated gold results from drillholes at the northern and southern ends of the Barkley target (**24BKRC010** and **24BKRC001**, Figure 1) confirms that the system extends over 2.5 km in strike. Further soil sampling results have identified areas of anomalous gold and pathfinder results around **24BKRC001** and further drilling is warranted to the north and east of this hole where mineralisation remains open. Further soil sampling and drilling is also planned to test the extent of gold mineralisation around **24BKRC010** which remains open to the north and south east.

Dereks Bore Gold

A three hole RC program for 606m was completed at Dereks Bore Gold targeting a continuation of gold intersected during the 2023 drill program⁽¹⁾. Drilling results from the latest program extended mineralisation 400m toward the north with the highest grade intercept of 1m at 2.4 grams per tonne gold from 128m in **24DBRC002** (Figure 2). Gold and pathfinder anomalism in UFF soil sampling and structural interpretation of gravity data indicates that mineralisation continues to remain open toward the north.

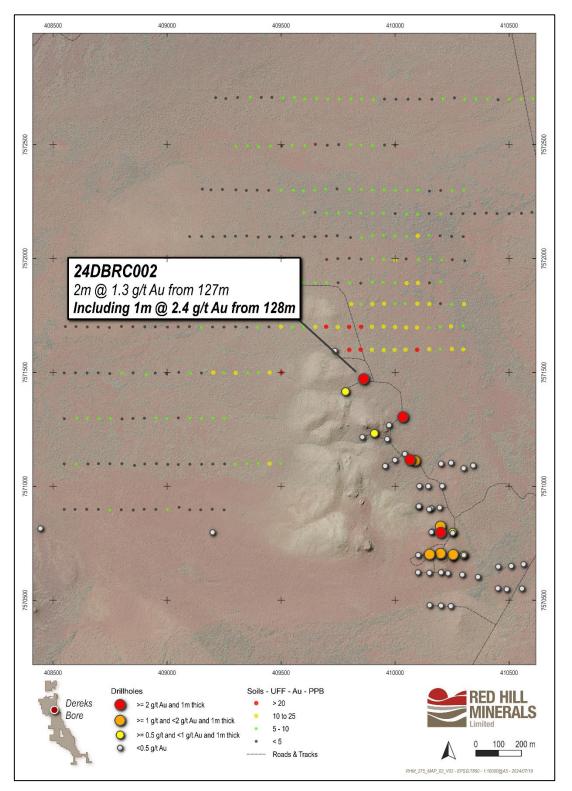


Figure 2: Drillhole locations and gold results at the Dereks Bore Gold Target.

Kens Bore Gold

Exploration RC drilling at the Kens Bore Gold Target aimed to test along strike of an existing prospector's pit and follow up 2023 drilling results^(2,3) which included 15m at 0.5 grams per tonne gold from 20m in 23KNRC001 and rock chips up to 224 grams per tonne gold.

Three RC holes were drilled for 321m and drilling confirmed the presence of gold mineralisation 350m SE of the previously identified mineralisation intersecting 5m at 0.7 grams per tonne gold from 73m in **24KNRC003** including 1m at 2.0 grams per tonne gold from 74m (Figure 3).

Gold mineralisation is interpreted to occur at the unconformity contact between sediments of the Mt McGrath Formation and Cheela Springs Basalt. Previous explorers have focused on a NE-SW cross-cutting fault as the model for gold mineralisation but results from the Company's recent drilling program indicate that mineralisation is constrained to the unconformity and remains open underneath alluvial cover toward the south and east. Further exploration will be undertaken pending heritage clearance.

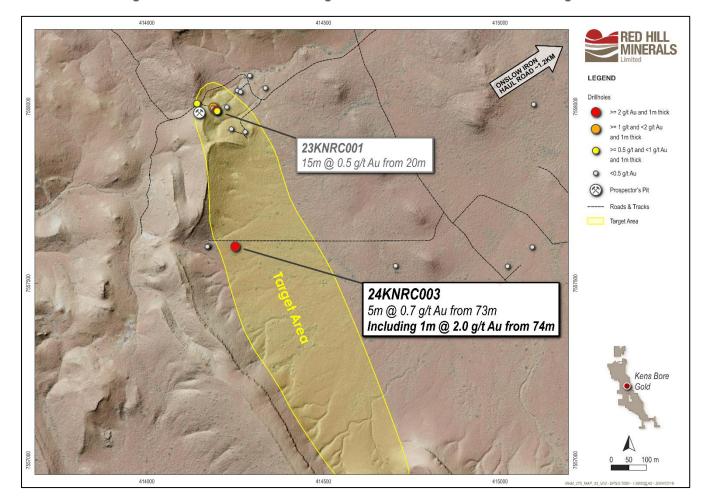


Figure 3: Drillhole locations and gold results at the Kens Bore Gold Target.

Cochrane Gold

Two RC drillholes for 454m were completed at the Cochrane Gold Target following an initial RAB drilling program completed in 2007⁽⁴⁾ and 2008⁽⁵⁾ that intersected 5m at 0.4 grams per tonne gold from 65m in RBI0015 and 5m at 0.2 grams per tonne gold from 50m in BBI0003 (Figure 4). **24CHRC001** returned 6m at 0.2 grams per tonne gold from 66m which is of similar grade and thickness to previous RAB drilling results.

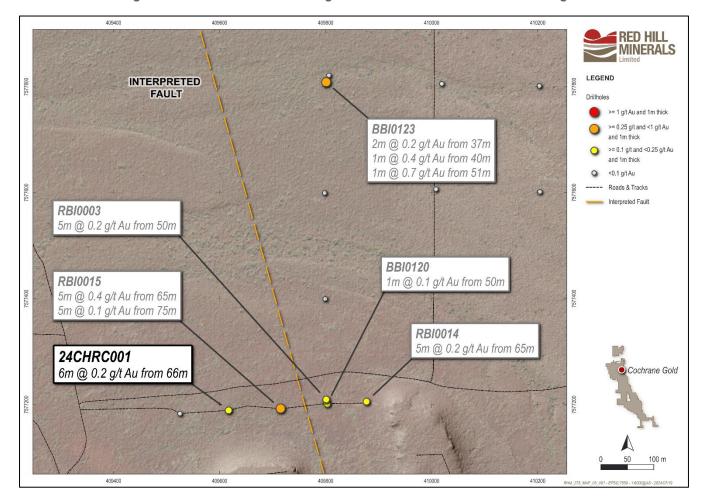


Figure 4: Drillhole locations and gold results at the Cochrane Gold Target.

Authorised by the Board.

Michael Wall CHIEF EXECUTIVE OFFICER

References

¹Refer Red Hill Minerals ASX Release "RC Drilling Intersects Gold Mineralisation" announcement dated 20 July 2023.

² Refer Red Hill Minerals ASX Release "Exploration Update – RC Drilling Extends Gold System at the Barkley Prospect" announcement dated 15 December 2023.

³ Refer Red Hill Minerals ASX Release "Base and Precious Metals Exploration Drilling Results" announcement dated 20 October 2022.
 ⁴ Refer Red Hill Minerals ASX Release "Activities Report for the Quarter Ended 31 December 2007" announcement dated 20 January 2008.
 ⁵ Refer Red Hill Minerals ASX Release "Activities Report for the Quarter Ended 31 December 2008" announcement dated 20 January 2009.

Table 1. Guinnary of No Drin Hole Conars.								
Hole ID	Target	Туре	Easting	Northing	RL (mAHD)	Dip	Azimuth	Total Depth (m)
24BKRC001	Barkley	RC	412983	7570157	193.0	-50	90	227
24BKRC002	Barkley	RC	412853	7570132	190.9	-60	90	251
24BKRC003	Barkley	RC	412752	7570153	190.0	-60	90	200
24BKRC004	Barkley	RC	412502	7571027	190.0	-50	90	257
24BKRC005	Barkley	RC	412398	7571001	187.6	-60	90	251
24BKRC006	Barkley	RC	412284	7570986	185.0	-60	90	203
24BKRC007	Barkley	RC	412748	7570502	192.6	-50	90	257
24BKRC008	Barkley	RC	412647	7570504	190.8	-50	90	251
24BKRC009	Barkley	RC	411925	7571738	181.1	-60	90	233
24BKRC010	Barkley	RC	411999	7572007	181.3	-60	90	149
24BKRC011	Barkley	RC	411875	7572009	179.9	-60	90	155
24CHRC001	Cochrane Gold	RC	409617	7577189	153.5	-60	325	251
24CHRC002	Cochrane Gold	RC	409525	7577183	152.2	-60	325	203
24DBRC001	Dereks Bore	RC	409782	7571416	177.1	-60	60	200
24DBRC002	Dereks Bore	RC	409786	7571418	177.5	-60	60	203
24DBRC003	Dereks Bore	RC	409735	7571595	173.1	-60	60	203
24KNRC001	Kens Bore Gold	RC	414174	7557606	229.0	-60	325	119
24KNRC002	Kens Bore Gold	RC	414171	7557604	229.2	-85	325	89
24KNRC003	Kens Bore Gold	RC	414250	7557604	223.6	-60	325	113
BBI0120**	Cochrane Gold	RAB	409803	7577201	154.5	-90	360	71
BBI0123**	Cochrane Gold	RAB	409801	7577808	153.2	-90	360	52
RBI0003**	Cochrane Gold	RC	409801	7577209	154.5	-90	360	92
RBI0014**	Cochrane Gold	RC	409877	7577205	155.2	-60	270	137
RBI0015**	Cochrane Gold	RC	409715	7577192	153.8	-60	90	95

Table 1: Summary of RC Drill Hole Collars.

**Re-reporting under JORC (2012) from previous Company drill program.

24BKRC001 Barkley 125 126 0.61 24BKRC001 Barkley 126 127 0.72 24BKRC001 Barkley 128 128 0.53 24BKRC001 Barkley 129 130 0.53 24BKRC001 Barkley 129 130 0.55 24BKRC001 Barkley 131 132 0.65 24BKRC002 Barkley 131 132 0.65 24BKRC003 Barkley NSI 248KR004 Barkley 24BKR004 Barkley NSI 248KR005 Barkley NSI 24BKR005 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKR006 Barkley 88 89 3 0.14 3m @ 0.2 g/t Au 24BKR009 Barkley 88 89 3 0.14 3m @ 0.2 g/t Au 24BKR010 Barkley 78 79 24 0.13 24 24BKR010 Barkley	Hole ID	Target	Depth From (m)	Depth To (m)	Width (m)	Au g/t	Gold Intercept	
24BKRC001 Barkley 126 127 128 0.23 0.53 7 0.63 0.53 7 0.63 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 7 0.72 0.85 0.35 0.35 0.26 0.72 0.85 0.26 0.72 0.85 7 0.85 7 0.85 7 0.85 7 0.72 1.78 7 0.10 1 m @ 0.1 g/t Au MSI 245KRC005 Barkley 245KRC006 Barkley 132 133 1 0.10 1 m @ 0.1 g/t Au 245KRC006 Barkley 87 88 3 0.14 3m @ 0.2 g/t Au 245KRC010 Barkley 89 90 0.13 245KRC010 Barkley	24BKRC001	Barkley	121	122	1	0.54	1m @ 0.5 g/t Au	
24BKRC001 Barkley 127 128 0.53 7 0.53 0.72 0.83 0.59 (t Au) 24BKRC001 Barkley 129 130 0.35 0.72 0.85 0.72 0.85 24BKRC001 Barkley 130 131 0.26	24BKRC001	Barkley	125	126		0.61		
24BKRC001 Barkley 128 129 7 0.72 7m @ 0.5 g/t Au 24BKRC001 Barkley 130 131 0.85 0.35 0.35 24BKRC002 Barkley 131 132 0.26 0.35 0.35 24BKRC003 Barkley NSI 0.26 0.12 1m @ 0.1 g/t Au 24BKRC004 Barkley NSI 0.12 1m @ 0.1 g/t Au 24BKRC005 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC006 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC007 Barkley 87 88 0.14 24BKRC009 Barkley 87 88 0.17 3m @ 0.8 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 78 79 3 0.12 3m @ 0.8 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 122 0.33 0.12 3m @ 0.2 g/t Au 2 g/t Au 24BKRC010	24BKRC001	Barkley	126	127		0.23		
24BKRC001 Barkley 129 130 0.85 24BKRC001 Barkley 130 131 0.26 24BKRC002 Barkley NSI 0.26 24BKRC003 Barkley NSI 24BKRC004 Barkley NSI 24BKRC005 Barkley NSI 24BKRC006 Barkley NSI 24BKRC007 Barkley NSI 24BKRC008 Barkley NSI 24BKRC009 Barkley NSI 24BKRC009 Barkley NSI 24BKRC009 Barkley 88 24BKRC010 Barkley 88 24BKRC010 Barkley 89 24BKRC010 Barkley 79 24BKRC010 Barkley 120	24BKRC001	Barkley	127	128		0.53		
24BKRC001 Barkley 130 131 0.35 24BKRC001 Barkley 131 132 0.26 24BKRC002 Barkley NSI 248KRC003 Barkley NSI 24BKRC004 Barkley NSI 248KRC006 Barkley NSI 24BKRC006 Barkley 222 223 1 0.12 1m @ 0.1 g/t Au 24BKRC006 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC009 Barkley 87 88 99 0 133 24BKRC010 Barkley 89 90 0.13 28 3m @ 0.8 g/t Au 24BKRC010 Barkley 79 80 3 0.94 3 3m @ 0.2 g/t Au 24BKRC010 Barkley 120 121 0.23 3 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 121 0.23 <t< td=""><td>24BKRC001</td><td>Barkley</td><td>128</td><td>129</td><td>7</td><td>0.72</td><td>7m @ 0.5 g/t Au</td></t<>	24BKRC001	Barkley	128	129	7	0.72	7m @ 0.5 g/t Au	
24BKRC001 Barkley 131 132 0.26 24BKRC002 Barkley NSI 24BKRC003 Barkley NSI 24BKRC004 Barkley NSI 24BKRC005 Barkley NSI 24BKRC006 Barkley NSI 24BKRC006 Barkley NSI 24BKRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 88 89 3 0.17 3m @ 0.2 g/t Au 24BKRC010 Barkley 78 79 1.28 3m @ 0.4 g/t Au 24BKRC010 Barkley 120 121 0.11 128 24BKRC010 Barkley 120 121 0.12 3m @ 0.2 g/t Au 24BKRC010 Barkley 120 121 0.23 24 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 121 12.3 0.33	24BKRC001	Barkley	129	130		0.85		
24BKRC002 Barkley NSI 24BKRC003 Barkley NSI 24BKRC004 Barkley NSI 24BKRC005 Barkley 222 24BKRC006 Barkley NSI 24BKRC007 Barkley NSI 24BKRC008 Barkley NSI 24BKRC009 Barkley NSI 24BKRC009 Barkley 88 24BKRC009 Barkley 88 24BKRC009 Barkley 88 24BKRC010 Barkley 78 24BKRC010 Barkley 79 80 24BKRC010 Barkley 120 121 24BKRC010 Barkley 120 121 24BKRC010 Barkley 120 121 24BKRC010 Barkley 120 121 24BKRC010 Barkley 120 126 4 0.12 24BKRC010 Barkley 121 122 24BKRC010 Barkley 120 126 <td< td=""><td>24BKRC001</td><td>Barkley</td><td>130</td><td>131</td><td></td><td>0.35</td><td></td></td<>	24BKRC001	Barkley	130	131		0.35		
24BKRC003 Barkley NSI 24BKRC004 Barkley NSI 24BKRC005 Barkley 222 223 1 0.12 1m @ 0.1 g/t Au 24BKRC006 Barkley NSI NSI 24BKRC007 Barkley NSI 24BKRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 88 89 3 0.17 3m @ 0.8 g/t Au 24BKRC010 Barkley 78 79 1.28 3m @ 0.8 g/t Au 24BKRC010 Barkley 120 121 0.11 0.12 3m @ 0.2 g/t Au 24BKRC010 Barkley 120 121 0.23 0.33 0.94 0.12 24BKRC010 Barkley 120 124 0.11 0.12 0.23 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 1 0.11 0.12 0.	24BKRC001	Barkley	131	132		0.26		
Z4BRC004 Barkley NSI 24BRC005 Barkley 222 223 1 0.12 1m @ 0.1 g/t Au 24BRC006 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BRC008 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BRC009 Barkley 88 89 3 0.11 3m @ 0.8 g/t Au 24BRC010 Barkley 78 79 3 1.28 3m @ 0.8 g/t Au 24BRC010 Barkley 80 81 0.11 0.11 3m @ 0.2 g/t Au 24BRC010 Barkley 120 121 0.11 0.11 1mcluding 1m @ 1.3 g/t Au 24BRC010 Barkley 120 126 4 0.12 133 24BRC010 Barkley 121 122 0.33 1m @ 0.2 g/t Au 24BRC010 Barkley 125 126 1 0.	24BKRC002	Barkley				NSI		
24BKRC005 Barkley 222 223 1 0.12 1m @ 0.1 g/t Au 24BKRC006 Barkley NSI NSI 24BKRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley 87 88 0.14 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC009 Barkley 87 88 99 0.113 3m @ 0.2 g/t Au 24BKRC010 Barkley 78 79 1.28 3m @ 0.8 g/t Au 24BKRC010 Barkley 120 121 0.11 0.12 24BKRC010 Barkley 120 126 0.11 0.12 3m @ 0.8 g/t Au 24BKRC010 Barkley 120 126 0.11 0.12 1.3 g/t Au 24BKRC010 Barkley 120 126 1 0.11 1.3 g/t Au 24BKRC010 Barkley 120 126 1 0.14 1m @ 0.1 g/t Au 24BKRC010 Barkle	24BKRC003	Barkley				NSI		
Z4BKRC006 Barkley NSI 24BKRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 87 88 0.17 3m @ 0.2 g/t Au 24BKRC009 Barkley 89 90 0.13 24BKRC010 Barkley 78 79 1.28 3m @ 0.8 g/t Au 24BKRC010 Barkley 78 79 1.28 3m @ 0.8 g/t Au 0.12 24BKRC010 Barkley 120 121 0.11 0.12 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 4 0.12 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 1 0.14 1m @ 0.2 g/t Au 4m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 1 0.14 1m @ 0.1 g/t Au 4d @ 0.2 g/t Au 24BKRC010 Barkley 120 126 1 0.14 1m @ 0.2 g/t Au 2d @ 0.6 g/t Au<	24BKRC004	Barkley				NSI		
24BKRC007 Barkley 132 133 1 0.10 1m @ 0.1 g/t Au 24BKRC008 Barkley NSI NSI 24BKRC009 Barkley 87 88 90 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 89 90 0.13 1.28 3m @ 0.8 g/t Au 24BKRC010 Barkley 79 80 3 0.94 0.12 24BKRC010 Barkley 120 121 0.11 3m @ 0.8 g/t Au 24BKRC010 Barkley 120 121 0.12 248KRC010 Barkley 120 124 24BKRC010 Barkley 120 126 4 0.12 0.33 248KRC010 Barkley 120 126 0.33 1m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 1 0.14 1m @ 0.1 g/t Au 24DRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39	24BKRC005	Barkley	222	223	1	0.12	1m @ 0.1 g/t Au	
24BKRC008 Barkley NSI 24BKRC009 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 88 89 0 0.13 3m @ 0.2 g/t Au 24BKRC010 Barkley 78 79 0.13 0.14 3m @ 0.8 g/t Au 24BKRC010 Barkley 78 79 0.12 3m @ 0.8 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 121 0.11 0.12 3m @ 0.2 g/t Au 24BKRC010 Barkley 120 126 0.33 0.94 0.12 24BKRC010 Barkley 120 126 0.11 4m @ 0.2 g/t Au 24BKRC010 Barkley 121 122 0.33 1m @ 2.3 g/t Au 24BKRC010 Barkley 130 131 1 2.30 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.14 1m @ 0.1 g/t Au 24DBRC001 Dereks Bore 39 40 0.11 </td <td>24BKRC006</td> <td>Barkley</td> <td></td> <td></td> <td></td> <td>NSI</td> <td>-</td>	24BKRC006	Barkley				NSI	-	
24BKRC009 Barkley 87 88 0.14 3m @ 0.2 g/t Au 24BKRC009 Barkley 89 90 0.13 0.13 3m @ 0.2 g/t Au 24BKRC010 Barkley 78 79 0.13 0.13 3m @ 0.8 g/t Au 24BKRC010 Barkley 78 79 0.12 0.13 3m @ 0.8 g/t Au 24BKRC010 Barkley 79 80 3 0.94 0.12 24BKRC010 Barkley 120 121 0.11 0.12 4m @ 0.2 g/t Au 24BKRC010 Barkley 122 123 0.33 0.34 0.33 24BKRC010 Barkley 122 123 0.33 0.14 1m @ 0.1 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au <	24BKRC007	Barkley	132	133	1	0.10	1m @ 0.1 g/t Au	
24BKRC009 Barkley 88 89 3 0.17 3m @ 0.2 g/t Au 24BKRC009 Barkley 89 90 0.13 0.13 3m @ 0.2 g/t Au 24BKRC010 Barkley 78 79 80 3 0.94 0.13 3m @ 0.8 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 79 80 81 0.94 0.12 3m @ 0.2 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 121 0.12 0.33 0.34 0.33 0.33 24BKRC010 Barkley 122 123 0.33 1m @ 0.1 g/t Au 24BKRC010 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24DRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.11 1m @ 0.1 g/t Au 24DBRC002 Dereks Bore 128 129 0.11 1m @ 0.2 g/t Au	24BKRC008	Barkley				NSI	- •	
24BKRC009 Barkley 89 90 0.13 24BKRC010 Barkley 78 79 3 0.94 including 1m @ 1.3 g/t Au 24BKRC010 Barkley 79 80 3 0.94 including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 121 0.11 0.12 4 0.12 4 4 0.12 4 4 0.12 4 4 0.12 4 4 0.12 4 4 0.12 4 4 0.12 4 4 0.23 4 4 0.23 4 4 0.23 4 4 0.23 4 4 0.23 4 4 0.23 4 4 0.23 4	24BKRC009	Barkley	87	88		0.14		
24BKRC010 Barkley 78 79 80 3 1.28 3m @ 0.8 g/t Au including 1m @ 1.3 g/t Au 24BKRC010 Barkley 80 81 0.12 0.14 including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 121 0.11 0.12 4 0.12 24BKRC010 Barkley 120 126 4 0.11 0.12 24BKRC010 Barkley 120 126 4 0.11 0.23 24BKRC010 Barkley 121 122 0.33 1m @ 0.2 g/t Au 24BKRC010 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36<	24BKRC009	Barkley	88	89	3	0.17	3m @ 0.2 g/t Au	
24BKRC010 Barkley 79 80 3 0.94 3m @ 0.8 g/t Au 24BKRC010 Barkley 80 81 0.12 including 1m @ 1.3 g/t Au 24BKRC010 Barkley 120 121 0.12 0.11 24BKRC010 Barkley 120 126 4 0.12 0.33 24BKRC010 Barkley 121 122 0.33 0.33 4m @ 0.2 g/t Au 24BKRC010 Barkley 121 122 0.33 1m @ 2.3 g/t Au 24BKRC010 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24BKRC010 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24CHRC002 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 <td< td=""><td>24BKRC009</td><td>Barkley</td><td>89</td><td>90</td><td></td><td>0.13</td><td></td></td<>	24BKRC009	Barkley	89	90		0.13		
Z4BKRC010 Barkley 79 80 3 0.94 including 1m @ 1.3 g/t Au 24BKRC010 Barkley 80 81 0.12 0.11 0.12 24BKRC010 Barkley 120 121 0.11 0.12 0.11 24BKRC010 Barkley 120 126 4 0.12 0.23 24BKRC010 Barkley 121 122 0.33 0.33 1m @ 2.3 g/t Au 24BKRC010 Barkley 130 131 1 2.30 1m @ 0.2 g/t Au 24BKRC010 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24BKRC010 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC020 Dereks Bore 127 128 2 2.36 2m @ 0.2 g/t Au	24BKRC010	Barkley	78	79		1.28		
24BKRC010 Barkley 80 81 0.12 24BKRC010 Barkley 120 121 0.11 24BKRC010 Barkley 120 126 4 0.12 24BKRC010 Barkley 121 122 0.33 4m @ 0.2 g/t Au 24BKRC010 Barkley 122 123 0.33 1m @ 2.3 g/t Au 24BKRC010 Barkley 130 131 1 2.30 1m @ 0.2 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC020 Dereks Bore 127 128 2 2.36 2m @ 0.2 g/t Au 24DBRC002 Dereks Bore 162 163 1 0.24	24BKRC010	Barkley	79	80	3	0.94		
24BKRC010 Barkley 120 126 4 0.12 4 0.12 4 4 0.12 4 4 0.12 0.23 5 4 0.12 0.23 0.33 <	24BKRC010	Barkley	80	81		0.12	Including 1m @ 1.3 g/t Au	
24BKRC010 Barkley 120 126 4 0.12 4m @ 0.2 g/t Au 24BKRC010 Barkley 121 122 123 0.33 0.33 24BKRC010 Barkley 130 131 1 2.30 1m @ 2.3 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.	24BKRC010	Barkley	120	121		0.11		
24BKRC010 Barkley 121 122 0.23 0.23 24BKRC010 Barkley 122 123 0.33 0.33 24BKRC010 Barkley 130 131 1 2.30 1m @ 2.3 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.2 g/t Au 24DRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC0	24BKRC010		120	126		0.12		
24BKRC010 Barkley 130 131 1 2.30 1m @ 2.3 g/t Au 24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24CHRC002 Cochrane Gold 6 72 6 0.24 6m @ 0.2 g/t Au 24DRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 0.11 including 1m @ 2.4 g/t Au 24DBRC002 Dereks Bore 128 129 2 2.36 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24MRC003 Kens Bore Gold 73 74 1	24BKRC010	Barkley	121	122	4	0.23	4m @ 0.2 g/t Au	
24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24CHRC002 Cochrane Gold NSI NSI 10.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 0.16 including 1m @ 2.4 g/t Au 24DBRC002 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.23 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11	24BKRC010	Barkley	122	123		0.33		
24BKRC011 Barkley 125 126 1 0.14 1m @ 0.1 g/t Au 24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24CHRC002 Cochrane Gold NSI NSI 10.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 0.16 including 1m @ 2.4 g/t Au 24DBRC002 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.23 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11	24BKRC010	Barkley	130	131	1	2.30	1m @ 2.3 g/t Au	
24CHRC001 Cochrane Gold 66 72 6 0.24 6m @ 0.2 g/t Au 24CHRC002 Cochrane Gold NSI NSI 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC001 Dereks Bore 39 40 2 0.11 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC002 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC003 Kens Bore Gold 73 74 1 0.11 2m @ 0.7 g/t Au 24KNRC003 Kens Bore Gold 74 75 1 2.03 2m @ 0.7 g/t Au <t< td=""><td>24BKRC011</td><td>-</td><td>125</td><td>126</td><td>1</td><td></td><td></td></t<>	24BKRC011	-	125	126	1			
24CHRC002 Cochrane Gold NSI 24DBRC001 Dereks Bore 36 37 1 0.19 1m @ 0.2 g/t Au 24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC001 Dereks Bore 39 40 2 0.11 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC002 Dereks Bore 128 129 2 0.16 including 1m @ 2.4 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.23 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 75 76	24CHRC001	Ţ	66		6			
24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC001 Dereks Bore 39 40 2 0.11 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC002 Dereks Bore 128 129 2 0.16 including 1m @ 2.4 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 0.23 2m @ 0.2 g/t Au 24DBRC004 Kens Bore Gold NSI 2m @ 0.2 g/t Au 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold <t< td=""><td>24CHRC002</td><td>Cochrane Gold</td><td></td><td></td><td colspan="2"></td><td><u>0</u></td></t<>	24CHRC002	Cochrane Gold					<u>0</u>	
24DBRC001 Dereks Bore 38 39 2 0.79 2m @ 0.5 g/t Au 24DBRC001 Dereks Bore 39 40 2 0.11 2m @ 0.5 g/t Au 24DBRC002 Dereks Bore 127 128 2 2.36 2m @ 1.3 g/t Au 24DBRC002 Dereks Bore 128 129 2 0.16 including 1m @ 2.4 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 0.23 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold NSI 2m @ 0.2 g/t Au 2m @ 0.2 g/t Au 24KNRC002 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold <t< td=""><td>24DBRC001</td><td>Dereks Bore</td><td>36</td><td>37</td><td>1</td><td>0.19</td><td>1m @ 0.2 g/t Au</td></t<>	24DBRC001	Dereks Bore	36	37	1	0.19	1m @ 0.2 g/t Au	
24DBRC001 Dereks Bore 39 40 0.11 0.00000000000000000000000000000000000	24DBRC001		38	39				
24DBRC002 Dereks Bore 128 129 2 0.16 including 1m @ 2.4 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore Gold 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11 2000000000000000000000000000000000000	24DBRC001	Dereks Bore	39		2	0.11	2m @ 0.5 g/t Au	
24DBRC002 Dereks Bore 128 129 2 0.16 including 1m @ 2.4 g/t Au 24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore Gold 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 73 74 1 0.11 2000000000000000000000000000000000000	24DBRC002						2m @ 1 3 g/t Au	
24DBRC003 Dereks Bore 162 163 1 0.24 1m @ 0.2 g/t Au 24DBRC003 Dereks Bore 164 165 2 0.23 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold 165 166 NSI 2 2m @ 0.2 g/t Au 24KNRC002 Kens Bore Gold NSI NSI 2 2 2 24KNRC003 Kens Bore Gold 73 74 1 0.11 2 5m @ 0.7 g/t Au 24KNRC003 Kens Bore Gold 74 75 1 2.03 5m @ 0.7 g/t Au 24KNRC003 Kens Bore Gold 75 76 1 0.49 5m @ 0.7 g/t Au 24KNRC003 Kens Bore Gold 76 77 1 0.89 5m @ 2.0 g/t Au		Dereks Bore			2			
24DBRC003 Dereks Bore 164 165 2 0.23 2m @ 0.2 g/t Au 24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold NSI NSI NSI 24KNRC002 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89	24DBRC003				1			
24DBRC003 Dereks Bore 165 166 2 0.16 2m @ 0.2 g/t Au 24KNRC001 Kens Bore Gold NSI NSI NSI 24KNRC002 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89	24DBRC003						_	
24KNRC001 Kens Bore Gold NSI 24KNRC002 Kens Bore Gold NSI 24KNRC003 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89	24DBRC003				2		2m @ 0.2 g/t Au	
24KNRC002 Kens Bore Gold NSI 24KNRC003 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89	24KNRC001			1	1			
24KNRC003 Kens Bore Gold 73 74 1 0.11 24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89	24KNRC002					NSI		
24KNRC003 Kens Bore Gold 74 75 1 2.03 24KNRC003 Kens Bore Gold 75 76 1 0.49 24KNRC003 Kens Bore Gold 76 77 1 0.89 24KNRC003 Kens Bore Gold 76 77 1 0.89	24KNRC003		73	74	1	0.11		
24KNRC003 Kens Bore Gold 75 76 1 0.49 5m @ 0.7 g/t Au 24KNRC003 Kens Bore Gold 76 77 1 0.89 including 1m @ 2.0 g/t Au	24KNRC003							
24KNRC003 Kens Bore Gold 76 77 1 0.89	24KNRC003							
	24KNRC003				1		including 1m @ 2.0 g/t Au	
	24KNRC003	Kens Bore Gold	77	78	1	0.12		

Table 2: Summary of RC Drill Hole Assay Intersections (Au \ge 0.1 g/t).

Hole ID	Target	Depth From (m)	Depth To (m)	Width (m)	Au g/t	Gold Intercept
BBI0120**	Cochrane Gold	50	51	1	0.11	1m @ 0.1 g/t Au
BBI0123**	Cochrane Gold	37	38	1	0.20	2~ @ 0.2 ~# 44
BBI0123**	Cochrane Gold	38	39	1	0.12	2m @ 0.2 g/t Au
BBI0123**	Cochrane Gold	40	41	1	0.37	1m @ 0.4 g/t Au
BBI0123**	Cochrane Gold	51	52	1	0.71	1m @ 0.7 g/t Au
RBI0003**	Cochrane Gold	50	55	5	0.17	5m @ 0.2 g/t Au
RBI0014**	Cochrane Gold	65	70	5	0.16	5m @ 0.2 g/t Au
RBI0015**	Cochrane Gold	65	70	5	0.36	5m @ 0.4 g/t Au
RBI0015**	Cochrane Gold	75	80	5	0.10	5m @ 0.1 g/t Au

Notes: g/t (grams per tonne). Gold (Au) intercept grade rounded to 1 decimal place NSI = No significant Intersections

**Re-reporting under JORC (2012) from previous Company drill program.

Competent Person Statement

The information in this report that relates to exploration activities is based on information compiled by Mr Michael Wall, Chief Executive Officer, Red Hill Minerals Limited who is a Member of the Australian Institute of Mining and Metallurgy. Mr Wall is a full-time employee of Red Hill Minerals Limited. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined by the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Wall consents to the report being issued in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data.

	I Sampling Techniques and Data.	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample 	RC assays in this report were sampled at 1m intervals using a cone splitter from which a 3-4kg sample was obtained. 6m composite samples (3-4kg each) were collected from the drill spoil piles using a scoop and sent for initial laboratory analysis. Anomalous results were followed up using the 1m samples collected directly from the drill rig. RAB holes were sampled every 1m.
	representivity and the appropriate calibration of any measurement tools or systems used.	Sample weight, quality, collection method and condition are logged at the time of collection and reported with the available data. Samples were dispatched to ALS in Wangara, Western Australia for gold photon analysis.
		Soil Sampling
		Samples are collected at a consistent depth of approximately 15cm at each site and sieved through a 1mm sieve with approximately 200g of soil collected and placed in paper geochemistry bags. Samples were dispatched to LabWest in Malaga, Western Australia for Ultrafine analysis consisting of a 50 element suite including gold.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, sonic, etc) and details (eg core	RC Drilling was completed by Hagstrom Drilling. RC holes were drilled using a 5% inch face sampling hammer.
	diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RAB bit sizes are unknown for the historical drilling.
Drill sample	• Method of recording and assessing core and chip sample	Sample recovery was recorded by Geologists during logging.
recovery	 recoveries and results assessed. Measures are taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred 	The cyclone used in the RC program was cleaned at the end of each 6m completed rod, and in between drill holes to minimise sample contamination. No association between lessened core/chip recovery and mineralised zones has been established at this time.
	due to preferential loss/gain of fine/coarse material.	AC samples were collected in pre-labelled calico bags.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies 	Chip samples were geologically logged for the entire length of the drillhole.
	and metallurgical studies.	Logging is both qualitative and semi-quantitative in nature.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	No Mineral Resource estimate is being reported.
	 The total length and percentage of the relevant intersections logged. 	Sample spoil piles and chip trays were photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling 	RC samples were collected in pre-labelled calico bags via a cone splitter mounted directly below the cyclone on the rig (at 1m intervals). Wet and dry samples were collected via the same technique. 6m composite samples were collected initially for analysis, and significant zones (generally >0.1g/t Au) were typically resampled using the 1m samples from the cone splitter.
	 Galary control procedures adopted for all sub-sampling stages to maximise the representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Soil samples are collected at a consistent depth of approximately 15cm at each site and sieved through a 1mm sieve with approximately 200g of soil collected and placed in paper geochemistry bags. Wet and dry samples were collected via the same technique.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Samples were stored on site prior to being transported to the laboratory. Wet samples were allowed to dry before being processed. All samples were appropriate for the grain size of the material being collected. Samples were sorted, dried and weighed at the laboratory where they were then crushed and riffle split to obtain a sub-fraction for pulverisation.
		Field duplicates were collected and certified reference material (CRM) data was submitted with drill samples. These were done at an approximate rate of one in 50 samples each.

Criteria	JORC Code explanation	Commentary
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	Gold analysis was done using either 500g Photon Assay technique, or a 30g Fire Assay and ICP-AES finish.
laboratory tests	 technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) 	Laboratory QAQC data is requested by the company as part of QAQC processes. Field duplicates were collected and certified reference material (CRM) data was submitted with drill samples. These were done at an approximate rate of one in 50 samples each. Prior to 2020, RHI samples were analysed using an aqua regia digest followed by mass spectrometry or optical emission spectrometry or fire assays with ICP-AES finish.
	and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Some verification of significant intersections and sampling/assaying has occurred with the re-assaying of 6m composites at 1m intervals.
ussaying	 The use of twinned holes. Documentation of primary data, data entry procedures, 	Twinned holes are not required at this early stage.
	data verification, data storage (physical and electronic) protocols.	Assay data results are sent electronically in csv and pdf format from the laboratory to the Company.
	Discuss any adjustments to assay data.	Soil Sampling
		Duplicate samples are inserted at approximately 1 in 50 and LabWest report blanks, standards and repeats which are then analysed for QC.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings	All drill holes and soil sample locations are initially surveyed by handheld GPS
	 and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Drill hole collar coordinates were verified in GIS utilising aerial photography and track file data as part of QA/QC procedures.
		Downhole surveys were completed using a gyroscope at the completion of each drill hole.
		Topographic coverage of all the Company's projects has been covered by aerial survey (LIDAR) with a vertical accuracy of ± 0.15 m. Drillhole collars/rock chip samples only picked up with GPS accuracy have been draped onto the topographic LIDAR data which is considered more accurate for RL; the eastings and northings were not changed. Historic collars surveyed by DGPS methods have not been draped onto topography.
		Company projects fall within the MGA Zone 50 (GDA 2020 based) for horizontal data and AHD for vertical data.
		No Mineral Resource estimate is being reported.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	Drilling has been completed on variable spacing. Drilling is considered early stage and spacing is variable due to the first pass assessment of the area being reported.
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill data spacing and distribution is not sufficient to establish a Mineral Resource estimate.
		Drill hole compositing has not been applied to results reported.
Orientation of data in relation	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this 	Drill holes were attempted to be oriented across strike where known, however in areas of cover, strike orientations were assumed.
to geological structure	 is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Initial exploratory holes are drilled perpendicular to mineralisation if known, otherwise holes were drilled vertical or at varying angles to determine stratigraphy and mineralisation.
Sample security	The measures taken to ensure sample security.	Samples were kept onsite until taken to transport depot for dispatch to the lab. A consignment number was used and the samples delivered directly to an analytical lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed on sampling techniques.

JORC Code explanation Commentary Criteria The drillholes reported in this announcement are located on Red Hill Mineral Type, reference name/number, location and ownership tenement and including agreements or material issues with third parties Iron Ore Joint Venture (RHIOJV) tenure of which the Company owns 100% of all mineral rights other than iron ore. land tenure such as joint ventures, partnerships, overriding royalties, status native title interests, historical sites, wilderness or national Iron ore rights are held by the RHIOJV. park and environmental settings. The security of the tenure held at the time of reporting No royalties are payable (other than WA Government). along with any known impediments to obtaining a licence No other known impediments exist to operate in the area. to operate in the area. Exploration Acknowledgment and appraisal of exploration by other Gold and Base metal mineral exploration has been conducted in the done by other area since late last century resulting in the discovery and extraction of parties. parties small scattered high grade copper occurrences near Red Hill, Rundle Hill and lead near Urandy Bore. More recently, Allied Minerals, BP-Seltrust, Sipa Resources, MIM, Pasminco, Western Mining, Aberfoyle, Goldfields, Poseidon, Mines Resources Australia and Chalice Gold conducted reconnaissance exploration for gold and base metals over extensive tracts of the lower Wyloo Group. Valiant Consolidated and CRA explored for manganese. Limited drilling for gold and base metals was conducted in several areas, but no economic intersections for the time resulted from this exploration. Geology Deposit type, geological setting and style of mineralisation. The project area lies along the western margin of the Hamersley Basin. It is dominated by the Proterozoic Ashburton Basin, consisting of the sedimentary succession belonging to the Mt Minnie Beds, the Ashburton Formation, and the volcano-sedimentary successions comprising the lower Wyloo Group which unconformably overlies the Hamersley Basin sequences. The area has potential for economic concentrations of gold and base metals. The lower Wyloo Group and the contact zone between the Ashburton and Hamersley Basins comprise the Paraburdoo Hinge Zone, which contains numerous base metal occurrences in the Ashburton Basin some of which is associated with the deep-seated, mantle-tapping faulting/fault splays associated with the Nanjilgardy Fault system. It is believed these deep-seated faults/splays transect the project area as identified from RHI interpretation work and GSWA datasets. Much of the area is undercover and deep weathering, acid leaching and silicification have caused geochemical deletion/suppression of the surface geochemistry.

A summary of all information material to the understanding

of the exploration results including a tabulation of the

elevation or RL (Reduced Level - elevation above sea

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the

following information for all Material drill holes: easting and northing of the drill hole collar

level in metres) of the drill hole collar

down hole length and interception depth

dip and azimuth of the hole

Section 2 Reporting of Exploration Results.

0

0

0

0

0

case.

hole length.

Drill hole

Information

All relevant drill-hole information can be found in Section 1 – "Sampling techniques", "Drilling techniques", "Drill Sample Recovery" and the

significant intercepts table.

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Reported intercepts for the targets discussed in this report are based on the following: ≥1m thick @ >0.1 g/t Au and allowing for up to 1m internal dilution of		
	 Where aggregate intercepts incorporate short lengths of 	<0.1 g/t Au		
	high grade results and longer lengths of low grade results,	No upper cuts have been applied.		
	the procedure used for such aggregation should be stated and some typical examples of such aggregations should	No metal equivalent values are used.		
	 be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Intervals are weighted based on their downhole length.		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Quoted mineralised intercepts are downhole lengths, true widths are not known.		
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Location maps of reported intercepts are included in the report.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to be a balanced report with a suitable cautionary note.		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material information or data to report.		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further drilling is planned to assess lateral and depth extensions.		

