

1 October 2024

CURNAMONA EARN-IN JV EXPLORATION UPDATE

<u>HIGHLIGHTS</u>

Red Hill Minerals Limited (ASX: RHI) (Red Hill or the Company) is pleased to provide an update on the Curnamona Project.

All conditions precedent have been met and formal earn-in JV documents have been executed with Peel Mining Limited (**ASX: PEX**). The Company has the right to earn up to 75% at the Curnamona Project for an expenditure of \$6.5 million over a five-year period with a minimum spend of \$1.5 million¹.

The Curnamona Project is located in the Broken Hill region (Figure 1), which is one of the most highly mineralised provinces in Australia, and is considered prospective for copper, gold, lead, zinc, silver, nickel, cobalt, molybdenum, uranium, and platinum group elements (PGEs).

The large, 1,500 km² project area is under-explored, mostly due to the thick cover sequences, but significant potential exists for a Tier 1 base metal system. Mineralisation is known to exist over a very large area, and within multiple highly prospective geological horizons including the key Broken Hill and Thackaringa Groups.

The Company has completed a comprehensive review of existing exploration data and reprocessing of geophysical datasets is currently underway whilst heritage and access agreement negotiations have also commenced.

Significant drilling results have previously been released from past explorers and are summarised in this announcement and include;

Broken Hill

- 4.5m at 7.07% zinc, 0.81% lead, 15 g/t silver from 224.2m in DDIN3
- 19.3m at 1.32% zinc, 9 g/t silver from 205m in **DDIN4**
- 8.6m at 1.84% zinc, 0.58% lead, 14 g/t silver from 347.4m and
- 13.9m at 0.91% zinc, 3 g/t silver from 502.1m in DDIN7
- 2.02m at 17.34% zinc, 5.92% lead, 92 g/t silver from 315.59m and
- 1.29m at 6.18% zinc, 0.7% lead, 20 g/t silver from 322.76m in 11DF12
- 2.6m at 5.13% copper, 4 g/t silver, 4.4 g/t gold from 337.6m and
- 0.8m at 1.87% copper, 8 g/t silver, 3.4 g/t gold from 504.1m in DD95SR1
- 4.5m at 0.94% copper, 6 g/t silver, 0.2 g/t gold from 188m and
- 1.3m at 1.27% copper, 1 g/t silver, 0.1 g/t gold from 251.7m in **RD84P01**.

<u>Anabama</u>

- 9m at 0.52% copper, 1.8 g/t gold from 9m in ARAB09028
- 72m at 0.9% copper, 0.22 g/t gold from 18m including
- 33m at 1.06% copper, 0.29 g/t gold from 42m in ARAB09029
- 124m at 0.62% copper from 48m including
- 12m at 1.89% copper from 86m in CRD10.

Address Level 2, 9 Havelock St West Perth WA 6005 Postal Address PO Box 689 West Perth WA 6872 (08) 9481 8627 enquiries@redhillminerals.com.au www.redhillminerals.com.au ABN 44 114 553 392

Red Hill Minerals CEO Michael Wall commented:

"Our exploration team has completed a comprehensive data review and is now focused on finalising access agreements to allow initial groundwork later this year with the aim of drilling our first holes at the project in the new year. The large, 1,500 km² project area is under-explored, mostly due to the thick cover sequences, but significant potential exists for a Tier 1 base metal system. Mineralisation is known to exist over a very large area, and within multiple highly prospective geological horizons including the key Broken Hill and Thackaringa Groups. Our exploration team has experience in systematically testing large areas of ground under cover and we will continue to use the latest exploration techniques to build upon the success of previous explorers to reduce the search space ahead of drilling our first holes at the project in the new year".

Previous explorers including CRA Exploration (1980s), BHP (1990s), Platsearch NL (2000s) and Teck Australia (2010s) completed diamond drilling at various targets throughout the tenements, establishing local geochemistry and mineralisation models (Figure 4). These drilling and assay results have confirmed the project to be highly prospective with significant base and precious metals intercepts returned (Tables 1 to 4).

Figure 1 - The Curnamona Earn-In Joint Venture Location Plan.

SUMMARY OF THE BROKEN HILL PROJECT (NSW)

The Broken Hill Project is located in western New South Wales (NSW), at the edge of the NSW and South Australian (SA) border, approximately 30km northwest of Broken Hill township and has Tier 1 potential for zinc-lead-silver deposits.

The tenements host the highly prospective Willyama Supergroup in which occurrences of interpreted Broken Hill Type (BHT) and Sedimentary Exhalative Type (SEDEX) base metal mineralisation occur primarily within the Broken Hill Group equivalent units, along with promising copper and gold intercepts in the Thackaringa Group (Figure 4).

A major redox boundary separates the Broken Hill Group from the Thackaringa Group and this is clearly highlighted in aeromagnetic data (Figure 2). The relative position of these prospective stratigraphic horizons can be traced for over 19 kilometres in strike within the Broken Hill Project and this redox boundary is proximal to Havilah Resources' 1.1 Mt copper, 3.1 Moz gold mineral resource².

Previous explorers of the tenements identified several base metals targets near this boundary including the Woolshed and Rathole Targets which are interpreted to be SEDEX target models.

At the Dome 1 and Dome 5 Targets, base metal mineralisation has been interpreted to be Mississippi Valley Type (MVT), hosted within Neoproterozoic Adelaidean sediments. Occurrences of interpreted BHT mineralisation has also been intersected at Dome 5 within typical Broken Hill mine sequence units.

Previous explorers have also recognised the potential of the Broken Hill Project to host several additional other styles of mineralisation, including:

- Shear hosted copper-cobalt in the Thackaringa Group (e.g. Copper Blow),
- Iron-oxide-copper-gold (IOCG) near the redox boundary, and
- Nickel-copper-PGE associated with ultramafic sills.

Figure 2 – The Broken Hill Project Target Location Plan, Redox Boundary and Aeromagnetic Imagery.

The Woolshed and Rathole Targets

The Woolshed Target is located along the redox boundary between the Broken Hill and Thackaringa Groups where copper-gold and zinc-lead-silver mineralisation was previously intersected in multiple stratigraphic horizons (Figures 1, 2, 3 and 4). Drilling targeting copper-gold mineralisation returned intersections of:

- 2.6m at 5.13% copper, 4 g/t silver, 4.4 g/t gold from 337.6m and
- 0.8m at 1.87% copper, 8 g/t silver, 3.4 g/t gold from 504.1m in **DD95SR1**.

Drilling two kilometres to the south of **DD95SR1** returned the mineralised intercepts below, highlighting the extensive strike and copper-gold potential of the Thackaringa Group:

- 4.5m at 0.94% copper, 6 g/t silver, 0.2g/t gold from 188m and
- 1.3m at 1.27% copper, 1 g/t silver, 0.1g/t gold from 251.7m in RD84P01
- 6.6m at 0.95% copper, 1 g/t silver, 0.5g/t gold from 195.6m and
- 1.2m at 1.38% copper, 3 g/t silver, 0.2g/t gold from 217m in **RD84P02**
- 1m at 1.34% copper, 1.4 g/t gold from 302m and
- 1m at 1.01% copper, 1.2 g/t gold from 336m and
- 1m at 1.25% copper from 564m in **RD86P013**.

Zinc-lead-silver results from drilling at the Woolshed Target encountered encouraging broad, low-grade horizons, with higher grade intervals focussed within the Lower Broken Hill Group^{4,5}:

- 71.9m at 0.70% zinc and lead from 170.1m including
- 4.5m at 7.07% zinc, 0.81% lead, 15 g/t silver from 224.2m and
- 43.7m at 0.47% zinc, 2 g/t silver from 357.8m in DDIN3
- 209m at 0.29% zinc and lead from 205m including
- 19.3m at 1.32% zinc, 9 g/t silver from 205m in DDIN4
- 8.6m at 1.84% zinc, 0.58% lead, 14 g/t silver from 347.4m and
- 43.8m at 0.60% zinc and lead from 502.1m including
- 13.9m at 0.91% zinc, 3 g/t silver from 502.1m in DDIN7
- 1.4m at 1.02% lead, 1 g/t silver from 542.6m and
- 3.6m at 1.31% zinc, 5 g/t silver from 821m in DDIN2B
- 103m at 0.27% zinc and lead from 510m including
- 1m at 12.20% zinc, 1 g/t silver from 581m in **RD85P06.**

Drilling at the Rathole Target located 10 kilometres south along strike from the Woolshed Target has been successful in defining encouraging intervals of copper-gold mineralisation with results including:

- 1m at 2.47 g/t gold from 248.8m and
- 1m at 1.66% copper, 3 g/t silver, 2.09 g/t gold from 380m in DD95SR2.

Given the success of previous explorers' limited work at the Broken Hill Project, and that no drilling has been conducted for over 12 years at the project, Red Hill is encouraged that there remains potential to contain a major deposit. The Company's work program will evaluate the broader mineralisation trend and sedimentary basin to vector toward areas of higher-grade mineralisation.

RED HILL MINERALS

Figure 4 – Geological Cross Section of the Woolshed Target showing Mineralisation Zoning with Significant Intersections (after Fabris et al, 2007³).

Dome 1 and Dome 5 Targets

Domal targets at the Broken Hill Project are interpreted to be granitic cores with rims of Upper Willyama Supergroup sequence rocks (Figures 1, 2 and 5). There are multiple dome targets throughout the project with anomalous base metal intercepts, and several of these targets have not yet been systematically tested.

The Dome 5 Target was drilled targeting BHT base metal mineralisation. Whilst geological interpretation of mineralised intercepts and host rock sequences by past explorers confirmed the validity of that model, significant MVT base metal mineralisation was also intersected within the younger Adelaidean sediments. Anomalous lead-zinc-silver results returned from historic drilling at Dome 5 include:

- 5.87m at 1.05% zinc, 0.68% lead, 9 g/t silver from 978m in DF1
- 1m at 13.88% zinc, 8.03% lead, 75 g/t silver from 327.33m and
- 3.06m at 6.95% zinc, 4 g/t silver from 337.64m in DF2
- 1.1m at 1.6% zinc, 2 g/t silver from 333.2m in DF4
- 7.2m at 0.8% lead, 15 g/t silver from 717.8m in DD96P2
- 2m at 2.78% lead, 14 g/t silver from 442.2m and
- 2.3m at 0.89% lead, 12 g/t silver from 836.5m in DD97P4
- 2.95m at 2.87% zinc, 0.49% lead, 4 g/t silver from 323.05m in **11DF09**
- 2.02m at 17.34% zinc, 5.92% lead, 92 g/t silver from 315.59m and
- 1.29m at 6.18% zinc, 0.7% lead, 20 g/t silver from 322.76m in **11DF12**.

Additional anomalous base metal results returned from Dome 1 include:

• 6.5m at 6.61% zinc, 1 g/t silver from 314.5m in RD86P010.

RED HILL MINERALS imited

RHM_323_MAP_11_V02 - EPSG-7854 - 1.60000@A5 - 2024/09/2

The Sentinel Hill Target

The Sentinel Hill Target is located south of the Barrier Highway and is approximately 35 kilometres southwest of Broken Hill (Figures 1 and 6). Past exploration has been focussed on areas of outcropping base metal anomalism with elevated lead, zinc and copper values returned from a strike extensive gossanous quartz-magnetite horizon. Limited drilling testing of this horizon has occurred to date with the best previously reported intercept:

• 1.22m at 2% zinc, 0.48% lead, 11 g/t silver from 149.04m in DD_SA9.

Figure 6 - Anomalous Results in Previous Drilling at the Sentinel Hill Target.

SUMMARY OF THE ANABAMA PROJECT (SA)

The Anabama Project is located in eastern South Australia approximately 140km southwest of Broken Hill, NSW, within the Olary Province (Figure 1). The Anabama Project is prospective for copper/gold and uranium and contains historic copper workings. Previous explorers that have held the Anabama Project, including Carpentaria Exploration Co Pty Ltd, Placer Exploration Ltd and Diatreme Resources Limited, concentrated on the structurally controlled outcropping copper/gold mineralisation present at the Anabama and the White Rocks Targets (Figures 7 and 8). Red Hill intend to use these outcropping targets to evaluate the broader potential of the Boucat Volcanics and employ mineral exploration techniques to efficiently screen the project for a larger copper-gold system.

The Anabama Target

Historical drilling at the Anabama Target indicated that copper mineralisation is contained in lenses located around structures, faults or shear zones. Mineralisation extends for over two kilometres along strike and is open at depth. Historic drilling returned mineralised intercepts such as:

- 50m at 0.69% copper from 2m including
- 4m at 1.32% copper from 10m in RC95AB12
- 28m at 0.96% copper, 0.1 g/t gold from 6m in RC95AB13
- 26m at 0.84% copper from 12m in RC95AB15
- 16m at 0.65% copper, 0.4 g/t gold from 36m in RC95AB9
- 24m at 0.58% copper, 0.1 g/t gold from 16m and
- 2m at 0.4 g/t gold from 64m and
- 5m at 0.56% copper from 114m in LD12
- 12m at 0.67% copper, 0.6 g/t gold from 8m including
- 4m at 1.58% copper from 16m and
- 2m at 1.2 g/t gold from 24m and
- 4m at 1.9 g/t gold from 38m and
- 20m at 0.54% copper, 0.1 g/t gold from 52m in LD13
- 18m at 0.5 g/t gold from 22m in LD14
- 25m at 0.68% copper, 0.4 g/t gold from 24m in LD53
- 46m at 0.54% copper, 0.1 g/t gold from 28m in LD54
- 19m at 0.79% copper, 0.1 g/t gold from 135m and
- 5m at 0.95% copper, 0.1 g/t gold from 218m in LD57
- 9m at 0.52% copper, 1.8 g/t gold from 9m in ARAB09028
- 27m at 0.67% copper, 0.1 g/t gold from 21m in ARAB09028B
- 72m at 0.9% copper, 0.22 g/t gold from 18m including
- 33m at 1.06% copper, 0.29 g/t gold from 42m in ARAB09029
- 3m at 0.1% copper, 0.34 g/t gold from 6m and
- 12m at 0.7% copper, 0.07 g/t gold from 24m and
- 33m at 0.83% copper, 0.21 g/t gold from 51m in ARAB09031
- 63m at 0.61% copper from 12m in ARAB09037
- 15m at 0.51% copper, 0.52 g/t gold from 9m and
- 18m at 0.57% copper, 0.09 g/t gold from 42m and
- 12m at 0.7% copper from 72m in ARAB09039
- 40m at 0.13 g/t gold from 8m and
- 35m at 0.66% copper from 201m in ARC0401
- 124m at 0.62% copper from 48m including
- 12m at 1.89% copper from 86m in CRD10
- 40m at 0.5% copper from 44m in CRD7
- 2m at 1.26% copper, 0.1 g/t gold from 90m in LD30
- 4m at 1.33% copper from 108m in CRD3.

Figure 7 - Anomalous Results in Previous Drilling at the Anabama Target.

- Tracks

Limited 923 MAP 13 V01 - FPSG 7854 - 1:100008045 - 202409/28

The White Rocks Target

The White Rocks Target is 7.5 kilometres to the southeast of the Anabama Target and is located within the Boucat Volcanics. At the White Rocks Target limited drilling has been completed. Historic drilling, adjacent to old copper workings, has intersected both oxide and sulphide copper mineralisation with results including:

- 13m at 0.65 g/t gold from 39m in drillhole LD39 and
- 13m at 0.96% copper from 1m in drillhole LD41.

Figure 8 - Anomalous Results in Previous Drilling at the White Rocks Target.

Authorised by the Board.

Michael Wall CHIEF EXECUTIVE OFFICER

Cautionary Statement

Information in this release is considered as historical by nature, and while all cares has been taken to review previous reports and available literature, ground testing and confirmation work is yet to be completed by the Company. The historical work was completed by reputable companies and laboratory analysis was conducted on a range of drill core and samples by reputable laboratories. However, there is no guarantee that these results are representative of the Curnamona Project until further sampling, drilling, assaying and processing test work is conducted by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information in the announcement.

Forward Looking Statement

This document may contain certain forward-looking statements which have not been based solely on historical facts but rather on Red Hill Minerals expectations about future events and on a number of assumptions which are subject to significant risks, uncertainties and contingencies many of which are outside the control of Red Hill Minerals and its directors, officers and advisers. Forward-looking statements include, but are not necessarily limited to, statements concerning Red Hill Minerals' planned exploration programme, strategies and objectives of management, anticipated dates and expected costs or outputs. When used in this document, words such as "could", "plan", "estimate", "expect", "intend", "may", potential", "should" and similar expressions are forward-looking statements. Due care and attention has been taken in the preparation of this document and although Red Hill Minerals believes that its expectations reflected in any forward looking statements made in this document are reasonable, no assurance can be given that actual results will be consistent with these forward-looking statements. This document should not be relied upon as providing any recommendation or forecast by Red Hill Minerals or its directors, officers or advisers. To the fullest extent permitted by law, no liability, however arising, will be accepted by Red Hill Minerals or its directors, officers or advisers, as a result of any reliance upon any forward looking statement contained in this document.

Competent Person Statement

The information in this report that relates to exploration activities is based on information compiled by Mr Michael Wall, Chief Executive Officer, Red Hill Minerals Limited who is a Member of the Australian Institute of Mining and Metallurgy. Mr Wall is a full-time employee of Red Hill Minerals Limited. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined by the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Wall consents to the report being issued in the form and context in which it appears.

⁵CRA Exploration Pty. Limited, 1985. Exploration report for the six month period ending 12th February, 1986 for EL 2166 Mundi Mundi, EL 2167 Tramway and EL 2251 Polygonum and report to accompany application for renewal of EL 2166 Mundi Mundi and EL 2167 Tramway Broken Hill District, NSW. CRA Exploration, Broken Hill, New South Wales.

¹ Refer Red Hill Minerals ASX Release "Binding Heads of Agreement expands Red Hill's exploration into the Broken Hill and Olary regions of NSW and SA" announcement dated 5 July 2024.

² Refer Havilah Resources Limited ASX Release "Kalkaroo copper – gold Project: Resource Upgrade" announcement dated 29 March 2017.

³ Fabris, A.J., Keeling, J.L., Fidler, R.W., Joseph, E.J. and Hill, S.M., 2007. Investigations of geochemical exploration techniques in the Curnamona Province – Curnaminex Project results 2005 - 2006. South Australia. Department of Primary Industries and Resources. Report Book 2007/10.

⁴ Platsearch NL., 2004. Joint Annual Report for Exploration Licences 4656 and 4657 "Mundi Mundi" for the period 21 April 2003 to 20 April 2004. Platsearch NL, Australia.

Table 1: Summary of Historic Drill Hole Collars at the Broken Hill Project.

Hole ID	Company	Reference Source	Hole Type	Easting	Northing	RL (mAHD)	Dip	Azimuth	Total Depth (m)
11DF09	Teck Australia Pty Ltd	1	DD	507638	6505474	122	-90	0	369
11DF10	Teck Australia Pty Ltd	2	DD	507042	6505187	122	-90	157	408
11DF11	Teck Australia Pty Ltd	2	DD	507491	6505976	122	-89	216	356
11DF12	Teck Australia Pty Ltd	2	DD	507426	6505663	122	-90	280	345
11DF16	Teck Australia Pty Ltd	2	DD	507070	6505685	122	-89	156	381
11DF17	Teck Australia Pty Ltd	2	DD	507284	6505852	122	-89	119	347
12DF18	Teck Australia Pty Ltd	2	DD	507235	6505531	122	-90	0	370
12DF19	Teck Australia Pty Ltd	2	DD	507885	6505295	124	-90	345	396
DD_SA3	Broken Hill South Ltd	3	DD	520816	6434491	245	-50	133	412
DD_SA9	Broken Hill South Ltd	3	DD	520390	6434015	254	-45	133	191
DD95SR1	Platsearch NL	4	RCD	503247	6494629	137	-60	210	601
DD95SR2	Platsearch NL	4	RCD	505072	6488379	149	-60	230	699
DD95SR3	Platsearch NL	4	RCD	503297	6494696	138	-60	210	545
DD95SR4	Platsearch NL	4	RCD	508572	64/6//9	162	-/0	2/4	496
DD95SR5	Platsearch NL	4	RCD	503372	6494379	137	-60	210	441
DD96P1	Platsearch NL	5	DD	513845	6495502	153	-65	127	482
DD96P2	Platsearch NL	5	DD	508741	6506398	121	-90	0	868
DD96P3	Platsearch NL	6	DD	524121	6502178	162	-90	0	727
DD97P4	Platsearch NL	6	DD	508955	6506609	122	-90	0	923
DD97P5	Platsearch NL	6	DD	509026	6506682	121	-90	0	850
DDIN2	Platsearch NL	7	RC	503277	6495798	134	-60	210	225
DDIN2B	Platsearch NL	7	RCD	503284	6495784	139	-70	210	866
DDIN3	Platsearch NL	7	RCD	502699	6495215	139	-70	210	636
DDIN4	Platsearch NL	/	RCD	502321	6495528	133	-70	210	414
DDIN5	Platsearch NL	8	RCD	500676	6496664	128	-70	200	4/4
DDIN7	Platsearch NL	8	RCD	502634	6495538	139	-/0	210	550
DF04	Teck Cominco Australia Pty Ltd	11	DD	507660	6505790	122	-90	0	358
DF05	Teck Cominco Australia Pty Ltd	11	DD	508850	6506040	122	-90	0	1,000
DF06	Teck Cominco Australia Pty Ltd	11	DD	507393	6505323	122	-90	0	400
DF07	Teck Cominco Australia Pty Ltd	11	DD	508079	6505436	123	-90	0	403
DF08	Teck Cominco Australia Pty Ltd	11	עט	509832	6507788	120	-90	0	1,000
DF1	Teck Cominco Australia Pty Ltd	9,10,11	DD	509460	6506600	122	-90	0	1,207
DF2	Platsearch NL / Teck Cominco Australia Pty I td	9,11	DD	507850	6505600	123	-90	0	974
DF3	Teck Cominco Australia Pty Ltd	10.11	DD	508850	6506040	123	-90	0	1,055
DT1	Platsearch NL	9	DD	512905	6496007	150	-90	0	755
MR98008	Platsearch NI	13	RC	506722	6483679	156	-90	0	295
MR99004	Platsearch NI	14	RC	504576	6491666	141	-90	0	407
MR99007	Platsearch NI	14	RC	511622	6487179	162	-90	0	349
RD84P01	CRA Exploration Ptv Ltd	15	DD	503923	6493094	147	-90	0	282
RD84P02	CRA Exploration Ptv Ltd	15	DD	503741	6493089	138	-90	0	250
RD84P05	CRA Exploration Ptv Ltd	15	DD	504562	6493577	147	-65	262	488
RD85P06	CRA Exploration Ptv Ltd	16	DD	503924	6495639	143	-75	218	713
RD85P08	CRA Exploration Ptv Ltd	16	DD	503551	6495277	141	-70	218	739
RD86NW1	CRA Exploration Ptv Ltd	17	DD	512591	6464078	216	-60	155	630
RD86P010	CRA Exploration Ptv Ltd	18	DD	514411	6496200	155	-65	172	470
RD86P011	CRA Exploration Ptv Ltd	19	DD	514398	6495695	156	-60	172	488
RD86P013	CRA Exploration Pty Ltd	19	DD	504074	6493086	146	-65	262	595
RD86P015	CRA Exploration Pty Ltd	19	DD	505801	6486088	152	-60	262	517
RD86P016	CRA Exploration Ptv Ltd	19	DD	508933	6495598	142	-90	352	1,245
RD87P017	CRA Exploration Pty Ltd	20	DD	505611	6487578	148	-60	262	559

Notes:

Co-ordinates are in GDA94 Zone 54. Hole Types - DD (Diamond Drillhole), RCD (RC top, Diamond tail), RC (Reverse Circulation), P (Percussion), RAB (Rotary Air Blast).

|--|

Hole ID	From (m)	To (m)	Width	Cu %	Au g/t	Ag g/t	Zn %	Pb %	Intercept
11DF09	323.05	326.00	2.95	0.01	NA	4.11	2.87	0.49	2.95m @ 2.87% Zn, 0.49% Pb, 4 g/t Ag from 323.05m
11DF09	333.73	334.30	0.57	BDL	NA	11.00	2.08	0.80	0.57m @ 2.08% Zn, 0.8% Pb, 11 g/t Ag from 333.73m
11DF10	334.60	334.80	0.20	0.01	NA	5.00	6.82	0.10	0.2m @ 6.82% Zn, 5 g/t Ag from 334.6m
11DF11	333.61	333.93	0.32	0.01	NA	27.00	2.87	2.86	0.32m @ 2.87% Zn, 2.86% Pb, 27 g/t Ag from 333.61m
11DF12	315.59	317.61	2.02	0.02	NA	92.08	17.34	5.92	2.02m @ 17.34% Zn, 5.92% Pb, 92 g/t Ag from 315.59m
11DF12	322.76	324.05	1.29	0.01	NA	19.71	6.18	0.70	1.29m @ 6.18% Zn, 0.7% Pb, 20 g/t Ag from 322.76m
11DF16	324.47	324.97	0.50	BDL	NA	5.00	0.02	0.56	0.5m @ 0.56% Pb, 5 g/t Ag from 324.47m
11DF17	316.44	316.78	0.34	0.03	NA	3.00	1.12	0.08	0.34m @ 1.12% Zn, 3 g/t Ag from 316.44m
12DF18	323.45	324.08	0.63	0.01	NA	6.00	2.24	0.01	0.63m @ 2.24% Zn, 6 g/t Ag from 323.45m
12DF19	349.17	349.67	0.50	BDL	NA	BDL	0.68	0.03	0.5m @ 0.68% Zn from 349.17m
DD_SA3	255.72	257.09	1.37	0.01	NA	2.79	0.60	0.20	1.37m @ 0.6% Zn, 3 g/t Ag from 255.72m
DD_SA3	259.07	261.51	2.44	0.17	NA	9.05	0.27	0.75	2.44m @ 0.75% Pb, 9 g/t Ag from 259.07m
DD_SA9	115.97	116.43	0.46	1.20	NA	NA	0.12	0.04	0.46m @ 1.2% Cu from 115.97m
DD_SA9	141.42	142.34	0.92	0.02	NA	12.60	0.29	0.50	0.92m @ 0.5% Pb, 13 g/t Ag from 141.42m
DD_SA9	149.04	150.26	1.22	0.05	NA	11.20	2.00	0.48	1.22m @ 2% Zn, 0.48% Pb, 11 g/t Ag from 149.04m
DD95SR1	301.10	302.00	0.90	0.03	0.70	BDL	0.00	BDL	0.9m @ 0.7 g/t Au from 301.1m
DD95SR1	337.60	340.20	2.60	5.13	4.43	4.27	0.00	BDL	2.6m @ 5.13% Cu, 4 g/t Ag, 4.43 g/t Au from 337.6m
DD95SR1	349.70	350.20	0.50	0.40	0.40	BDL	0.00	BDL	0.5m @ 0.4 g/t Au from 349.7m
DD95SR1	504.10	504.90	0.80	1.87	3.37	8.00	0.00	0.00	0.8m @ 1.87% Cu, 8 g/t Ag, 3.37 g/t Au from 504.1m
DD95SR2	248.80	249.80	1.00	0.02	2.47	BDL	0.02	0.00	1m @ 2.47 g/t Au from 248.8m
DD95SR2	380.00	381.00	1.00	1.66	2.09	3.00	0.00	BDL	1m @ 1.66% Cu, 3 g/t Ag, 2.09 g/t Au from 380m
DD95SR2	382.20	382.30	0.10	3.18	0.44	BDL	0.00	BDL	0.1m @ 3.18% Cu, 0.44 g/t Au from 382.2m
DD95SR2	426.30	426.60	0.30	2.56	5.20	2.00	0.00	BDL	0.3m @ 2.56% Cu, 2 g/t Ag, 5.2 g/t Au from 426.3m
DD95SR2	640.50	641.00	0.50	0.24	0.40	BDL	0.00	BDL	0.5m @ 0.4 g/t Au from 640.5m
DD95SR3	517.40	517.70	0.30	0.32	0.10	BDL	0.00	BDL	0.3m @ 0.1 g/t Au from 517.4m
DD95SR4	291.60	291.80	0.20	0.55	0.13	BDL	0.00	BDL	0.2m @ 0.55% Cu, 0.13 g/t Au from 291.6m
DD95SR5	206.80	207.50	0.70	0.01	1.04	BDL	0.00	BDL	0.7m @ 1.04 a/t Au from 206.8m
DD95SR5	238.90	239.30	0.40	0.01	2.10	2.00	0.00	0.00	0.4m @ 2.1 a/t Au 2 a/t Aa from 238.9m
DD95SR5	259.80	260.40	0.60	0.42	0.17	BDL	0.00	0.00	0.6m @ 0.17 a/t Au from 259.8m
DD95SR5	280.20	280.40	0.20	0.39	0.33	3.00	0.00	0.00	0.2m @ 0.33 a/t Au 3 a/t Ag from 280.2m
DD95SR5	289.30	289.50	0.20	0.35	1.76	3.00	0.00	0.00	0.2m @ 1.76 a/t Au 3 a/t Ag from 289.3m
DD95SR5	294.90	295.00	0.10	0.87	0.19	2.00	BDL	BDL	0.1m @ 0.87% Cu. 2 a/t Aa. 0.19 a/t Au from 294.9m
DD95SR5	323.30	323.60	0.30	0.13	0.34	BDL	0.00	BDL	0.3m @ 0.34 g/t Au from 323.3m
DD96P1	319.70	320.00	0.30	0.50	0.02	BDL	0.00	BDL	0.3m @ 0.5% Cu, 0.02 g/t Au from 319.7m
DD96P2	628.20	629.20	1.00	0.08	0.01	9.00	0.73	0.03	1m @ 0.73% Zn, 9 g/t Ag from 628.2m
DD96P2	717.80	725.00	7.20	0.02	0.02	15.01	0.24	0.80	7.2m @ 0.8% Pb, 15 g/t Ag from 717.8m
DD96P3	452.80	453.00	0.20	0.02	1.00	BDL	0.01	0.00	0.2m @ 1 g/t Au from 452.8m
DD96P3	465.90	466.10	0.20	0.34	0.16	3.00	0.01	0.00	0.2m @ 0.16 g/t Au 3 g/t Ag from 465.9m
DD96P3	677.90	678.10	0.20	0.14	0.33	2.00	0.00	0.00	0.2m @ 0.33 g/t Au 2 g/t Ag from 677.9m
DD97P4	442.20	444.20	2.00	0.02	0.01	14.00	0.08	2.78	2m @ 2.78% Pb, 14 g/t Ag from 442.2m
DD97P4	474.20	475.00	0.80	0.00	0.01	18.00	0.03	2.65	0.8m @ 2.65% Pb, 18 g/t Ag from 474.2m
DD97P4	797.10	797.30	0.20	0.00	BDL	BDL	0.65	0.01	0.2m @ 0.65% Zn from 797.1m
DD97P4	836.50	838.80	2.30	0.02	0.02	11.91	0.23	0.89	2.3m @ 0.89% Pb, 12 g/t Ag from 836.5m
DD97P5	314.50	317.20	2.70	0.00	BDL	BDL	0.75	0.02	2.7m @ 0.75% Zn from 314.5m
DD97P5	325.00	331.00	6.00	0.00	0.00	0.17	0.50	0.01	6m @ 0.5% Zn from 325m
DDIN2	195.00	225.00	30.00	0.00	0.10	BDL	0.01	0.00	30m @ 0.1 g/t Au from 195m
DDIN2B	217.70	220.10	2.40	0.02	0.11	BDL	0.03	0.01	2.4m @ 0.11 g/t Au from 217.7m
DDIN2B	336.80	336.90	0.10	0.00	BDL	3.00	0.03	0.88	0.1m @ 0.88% Pb, 3 g/t Ag from 336.8m
DDIN2B	338.80	339.10	0.30	0.03	0.08	2.00	0.16	1.43	0.3m @ 1.43% Pb, 2 g/t Ag from 338.8m
DDIN2B	365.70	370.00	4.30	0.01	0.01	1.40	0.21	0.45	4.3m @ 0.45% Pb, 1 g/t Ag from 365.7m
DDIN2B	542.60	544.00	1.40	0.01	0.03	1.00	0.44	1.02	1.4m @ 1.02% Pb, 1 g/t Ag from 542.6m
DDIN2B	563.50	563.70	0.20	0.02	0.07	8.00	1.15	2.84	0.2m @ 1.15% Zn, 2.84% Pb, 8 g/t Ag from 563.5m
DDIN2B	821.00	824.60	3.60	0.01	0.00	4.53	1.31	0.09	3.6m @ 1.31% Zn, 5 g/t Ag from 821m
DDIN2B	847.30	847.70	0.40	0.02	BDL	BDL	0.62	0.02	0.4m @ 0.62% Zn from 847.3m
DDIN3	224.20	228.70	4.50	0.01	0.04	15.13	7.07	0.81	4.5m @ 7.07% Zn, 0.81% Pb, 15 g/t Ag from 224.2m
DDIN3	298.90	303.00	4.10	0.01	0.02	4.00	0.90	0.29	4.1m @ 0.9% Zn, 4 g/t Ag from 298.9m
DDIN3	357.80	401.50	43.70	0.01	0.01	2.28	0.47	0.09	43.7m @ 0.47% Zn, 2 g/t Ag from 357.8m
DDIN4	205.00	224.30	19.30	0.01	0.02	8.71	1.32	0.27	19.3m @ 1.32% Zn, 9 g/t Ag from 205m
DDIN4	292.60	295.40	2.80	0.01	0.02	BDL	0.58	0.08	2.8m @ 0.58% Zn from 292.6m
DDIN4	361.10	382.10	21.00	0.01	0.01	1.19	0.47	0.08	21m @ 0.47% Zn from 361.1m
DDIN4	390.70	391.40	0.70	0.01	0.01	3.00	0.53	0.07	0.7m @ 0.53% Zn, 3 g/t Ag from 390.7m
DDIN4	395.70	397.20	1.50	0.01	BDL	2.00	0.57	0.01	1.5m @ 0.57% Zn, 2 g/t Ag from 395.7m
DDIN4	401.80	412.10	10.30	0.02	0.01	3.17	0.58	0.13	10.3m @ 0.58% Zn, 3 g/t Ag from 401.8m
DDIN5	280.70	283.00	2.30	0.01	0.01	0.52	0.92	0.04	2.3m @ 0.92% Zn, 1 g/t Ag from 280.7m
DDIN5	301.70	302.10	0.40	0.01	0.01	BDL	0.56	0.04	0.4m @ 0.56% Zn from 301.7m

DDIN5	445.90	446.10	0.20	0.01	0.04	9.00	1.50	0.29	0.2m @ 1.5% Zn, 9 g/t Ag from 445.9m
DDIN5	459.40	464.70	5.30	0.02	0.02	3.00	0.65	0.11	5.3m @ 0.65% Zn, 3 g/t Ag from 459.4m
DDIN5	472.50	474.00	1.50	0.01	BDL	BDL	0.54	0.01	1.5m @ 0.54% Zn from 472.5m
DDIN7	307.50	317.90	10.40	0.01	0.02	2.14	0.71	0.24	10.4m @ 0.71% Zn, 2 g/t Ag from 307.5m
DDIN7	347.40	356.00	8.60	0.01	0.02	13.92	1.84	0.58	8.6m @ 1.84% Zn, 0.58% Pb, 14 g/t Ag from 347.4m
DDIN7	399.60	399.90	0.30	0.01	0.02	3.00	2.10	0.40	0.3m @ 2.1% Zn, 3 g/t Ag from 399.6m
DDIN7	428.60	432.30	3.70	0.02	0.01	2.00	0.62	0.17	3.7m @ 0.62% Zn, 2 g/t Ag from 428.6m
DDIN7	458.60	459.20	0.60	0.01	0.01	6.00	1.02	0.47	0.6m @ 1.02% Zn, 0.47% Pb, 6 g/t Ag from 458.6m
DDIN7	502.10	516.00	13.90	0.02	0.01	3.06	0.91	0.10	13.9m @ 0.91% Zn, 3 g/t Ag from 502.1m
DDIN7	534.00	545.90	11.90	0.02	0.01	2.49	0.62	0.11	11.9m @ 0.62% Zn, 2 g/t Ag from 534m
DF04	328.20	329.10	0.90	0.01	0.00	7.34	2.54	0.03	0.9m @ 2.54% Zn, 7 g/t Ag from 328.2m
DF04	333.20	334.30	1.10	0.00	0.01	2.03	1.60	0.04	1.1m @ 1.6% Zn, 2 g/t Ag from 333.2m
DF05	337.10	337.40	0.30	0.01	0.01	8.35	8.62	0.41	0.3m @ 8.62% Zn, 8 g/t Ag from 337.1m
DF05	349.00	349.50	0.50	0.00	0.00	16.50	0.02	1.65	0.5m @ 1.65% Pb, 17 g/t Ag from 349m
DF05	352.00	353.00	1.00	0.00	0.00	0.51	0.59	0.06	1m @ 0.59% Zn, 1 g/t Ag from 352m
DF05	573.80	5/3.90	0.10	0.00	0.00	1.62	2.57	0.00	0.1m @ 2.57% Zn, 2 g/t Ag from 573.8m
DF05	590.90	591.30	0.40	0.00	0.01	0.41	0.53	0.03	0.4m @ 0.53% Zn from 590.9m
DF05	596.80	090.90 615.00	0.10	0.01	0.01	2.21	Z.11	0.01	0.1m @ 2.77% Zn, 2 g/t Ag from 596.6m
DF05	014.00	015.00	0.40	0.00	0.01	1.20	1.17	0.02	0.4m @ 1.17% Zn, 1 g/t Ag from 614.6m
DF05	700.50	700.70	2.20	0.05	0.01	2.02	0.01	0.02	2.2111 @ 0.01% 211, 2 g/l Ag 110111 7 05.5111
DF05	790.30	790.70	0.20	0.04	0.01	6.72	0.00	0.00	0.2111 @ 0.00% 211, 1 g/t Ag 110111 790.5111
DF05	791.00	192.00	0.70	0.19	0.02	0.73	0.04	0.03	0.711 @ 0.34% 211, 7 g/t Ag 11011 791.611
DF03	990.00 317.00	318.00	0.10	0.00	0.20	83.00	10.00	1 00	0.111 @ 0.2 g/t Au T g/t Ag 11011 995.511
DF00	334.20	33/ 30	0.00	0.03	0.01	05.00	0.55	4.90	0.011 @ 19.15% Z1, 4.9% FD, 05 g/l Ag 11011 517.211
DF07	340.30	3/0.60	0.10	0.01	0.00	23.70	0.00	2.02	0.3m @ 2.94% Pb. 24 a/t Ag from 340.3m
DF08	571.60	572.00	1 30	0.00	0.00	0.41	0.03	0.02	1.3m @ 0.77% 7n from 571.6m
DF08	630.00	633.00	3.00	0.01	0.00	0.41	0.01	0.02	3m @ 0.14 g/t Au from 630m
DF08	736.00	736.20	0.20	0.00	0.14	1.04	0.68	0.00	0.2m @ 0.68% Zn = 1.0/t Ag from 736m
DF08	791.60	791 70	0.20	0.00	0.01	8 42	7 27	0.00	0.1m @ 7.27% Zn, 0.83% Ph, 8 g/t Ag from 791.6m
DF08	825.50	825.60	0.10	0.01	0.00	2 21	2 16	0.00	0.1m @ 2.16% Zn, 2.000 / 10, 0.007 Kg Holl 701.0m
DF1	348.50	348 70	0.10	0.01	0.00	1 64	0.14	0.05	0.2m @ 0.28 a/t Au 2 a/t Ag from 348.5m
DF1	452.00	455.00	3.00	0.00	0.00	6.27	0.01	0.53	3m @ 0.53% Pb. 6 g/t Ag from 452m
DF1	479.00	481.00	2.00	0.00	0.00	4.50	0.02	0.53	2m @ 0.53% Pb. 5 g/t Ag from 479m
DF1	483.00	484.00	1.00	BDL	0.01	6.00	0.00	0.89	1m @ 0.89% Pb, 6 g/t Ag from 483m
DF1	978.00	983.87	5.87	0.01	0.01	9.10	1.05	0.68	5.87m @ 1.05% Zn, 0.68% Pb, 9 g/t Ag from 978m
DF1	985.63	985.73	0.10	0.07	0.01	4.00	0.77	0.13	0.1m @ 0.77% Zn, 4 g/t Ag from 985.63m
DF1	995.00	995.61	0.61	0.04	0.01	7.00	0.50	0.02	0.61m @ 0.5% Zn, 7 g/t Ag from 995m
DF1	1073.90	1074.30	0.40	0.00	0.00	0.68	0.69	0.13	0.4m @ 0.69% Zn, 1 g/t Ag from 1073.9m
DF2	327.33	328.33	1.00	0.03	0.02	74.85	13.88	8.03	1m @ 13.88% Zn, 8.03% Pb, 75 g/t Ag from 327.33m
DF2	337.64	340.70	3.06	0.01	0.02	3.89	6.95	0.17	3.06m @ 6.95% Zn, 4 g/t Ag from 337.64m
DF2	480.00	481.80	1.80	0.00	0.16	0.39	0.01	0.00	1.8m @ 0.16 g/t Au from 480m
DF2	515.00	520.00	5.00	0.00	0.22	0.34	0.01	0.00	5m @ 0.22 g/t Au from 515m
DF2	527.00	530.00	3.00	0.00	0.16	0.40	0.03	0.01	3m @ 0.16 g/t Au from 527m
DF2	533.00	534.00	1.00	0.00	0.59	0.25	0.01	0.01	1m @ 0.59 g/t Au from 533m
DF2	538.00	539.00	1.00	0.00	0.23	0.32	0.01	0.00	1m @ 0.23 g/t Au from 538m
DF2	544.00	546.00	2.00	0.00	0.26	0.22	0.01	0.00	2m @ 0.26 g/t Au from 544m
DF3	493.70	494.80	1.10	0.02	0.00	2.47	0.92	0.26	1.1m @ 0.92% Zn, 2 g/t Ag from 493.7m
DF3	783.00	783.40	0.40	0.01	0.11	0.90	0.01	0.01	0.4m @ 0.11 g/t Au 1 g/t Ag from 783m
DF3	790.80	791.50	0.70	0.03	0.12	0.65	0.01	0.00	0.7m @ 0.12 g/t Au 1 g/t Ag from 790.8m
DF3	846.90	847.20	0.30	0.01	0.01	3.84	0.74	0.07	0.3m @ 0.74% Zn, 4 g/t Ag from 846.9m
DF3	854.00	854.60	0.60	0.01	0.01	1.55	0.53	0.13	0.6m @ 0.53% Zn, 2 g/t Ag from 854m
DF3	895.90	040.00	0.40	1.00	0.06	23.40	0.09	0.20	
DF3	947.60	948.80	1.20	0.02	0.12	1.93	0.03	0.01	1.2m @ 0.12 g/t Au 2 g/t Ag from 947.6m
	028.00	029.00	19.00	0.00		BDL	0.60	0.00	19m @ 0.6% 211 from 020m
MP00004	230.00	200.00	12.00	0.00	0.00		0.01	0.00	12m @ 0.11 a/t Au from 200m
MP00007	230.00	3// 00	6 00	0.00	0.11	2 00	0.01	0.00	$f_{\text{cm}} = 0.17 \text{ g/r} - 10 \text{ m} 0.11230 \text{ m}$ $f_{\text{cm}} = 0.47 \text{ g/r} - 10 \text{ m} 0.11230 \text{ m}$
RD8/IP01	188.00	192.50	4.50	0.00	0.47	5.56	0.00	0.04	$4.5m \oslash 0.94\%$ Cu 6 a/t $\Delta a = 0.24$ a/t Au from 188m
RD84P01	105.00	192.00	1 30	0.34	0.24	1.00	0.00	0.00	1.3m @ 0.77% Cu 1 α/t Δα 0.34 α/t Δu from 195.7m
RD84P01	214 00	216.00	2 00	0.99	0.04	BDI	0.00	0.00	2m @ 0.99% Cu from 214m
RD84P01	251 70	253.00	1.30	1 27	0.09	1.00	0.00	0.00	1.3m @ 1.27% Cu, 1 g/t Ag, 0.09 g/t Au from 251.7m
RD84P01	275.00	276.00	1.00	0.36	0.00	BDI	0.00	0.00	1m @ 0.2 g/t Au from 275m
RD84P02	195.60	202.20	6.60	0.95	0.50	0.91	0.00	0.00	6.6m @ 0.95% Cu, 1 a/t Aa, 0.5 a/t Au from 195.6m
RD84P02	217.00	218.20	1.20	1,38	0.16	3.00	0.01	0.00	1.2m @ 1.38% Cu, 3 g/t Ag, 0.16 g/t Au from 217m
RD84P05	399.00	400.00	1.00	0.04	NA	15.00	0.03	0.69	1m @ 0.69% Pb, 15 g/t Ag from 399m
RD84P05	429.40	430.00	0.60	0.00	0.02	8.00	0.04	0.74	0.6m @ 0.74% Pb, 8 g/t Ag from 429.4m

RD84P05	449.80	450.20	0.40	0.00	BDL	8.00	0.11	0.74	0.4m @ 0.74% Pb, 8 g/t Ag from 449.8m
RD85P06	369.20	370.35	1.15	0.01	BDL	2.00	0.60	0.06	1.15m @ 0.6% Zn, 2 g/t Ag from 369.2m
RD85P06	379.00	380.00	1.00	0.04	NA	29.00	0.06	0.53	1m @ 0.53% Pb, 29 g/t Ag from 379m
RD85P06	514.00	515.00	1.00	0.00	0.00	2.00	0.80	0.32	1m @ 0.8% Zn, 2 g/t Ag from 514m
RD85P06	525.00	526.00	1.00	0.00	0.00	13.00	0.25	0.56	1m @ 0.56% Pb, 13 g/t Ag from 525m
RD85P06	533.00	535.00	2.00	0.05	NA	1.50	0.21	0.52	2m @ 0.52% Pb, 2 g/t Ag from 533m
RD85P06	545.00	546.00	1.00	0.01	0.00	1.00	0.86	0.36	1m @ 0.86% Zn, 1 g/t Ag from 545m
RD85P06	561.00	562.00	1.00	0.00	0.00	1.00	0.19	0.51	1m @ 0.51% Pb, 1 g/t Ag from 561m
RD85P06	565.00	567.00	2.00	0.03	NA	1.00	0.21	0.81	2m @ 0.81% Pb, 1 g/t Ag from 565m
RD85P06	581.00	582.00	1.00	0.01	0.00	1.00	12.20	0.27	1m @ 12.2% Zn, 1 g/t Ag from 581m
RD85P06	586.00	587.00	1.00	0.01	0.00	1.00	0.52	0.38	1m @ 0.52% Zn, 1 g/t Ag from 586m
RD85P06	623.00	625.50	2.50	0.02	NA	2.00	0.22	0.68	2.5m @ 0.68% Pb, 2 g/t Ag from 623m
RD85P06	689.00	690.00	1.00	0.01	0.00	4.00	0.68	0.36	1m @ 0.68% Zn, 4 g/t Ag from 689m
RD85P08	610.00	614.00	4.00	0.07	0.00	5.75	0.58	0.04	4m @ 0.58% Zn, 6 g/t Ag from 610m
RD85P08	619.00	620.00	1.00	0.01	NA	4.00	0.66	0.13	1m @ 0.66% Zn, 4 g/t Ag from 619m
RD85P08	627.20	630.40	3.20	0.02	0.00	0.44	0.63	0.11	3.2m @ 0.63% Zn from 627.2m
RD85P08	665.00	666.00	1.00	0.01	NA	BDL	0.53	0.01	1m @ 0.53% Zn from 665m
RD86NW1	174.00	175.00	1.00	0.02	0.15	0.50	0.18	0.00	1m @ 0.15 g/t Au 1 g/t Ag from 174m
RD86NW1	187.00	188.00	1.00	0.02	0.15		0.12	0.00	1m @ 0.15 g/t Au from 187m
RD86P010	314.50	321.00	6.50	0.02	BDL	0.92	6.61	0.04	6.5m @ 6.61% Zn, 1 g/t Ag from 314.5m
RD86P011	416.50	417.00	0.50	0.09	0.01	2.00	1.37	0.01	0.5m @ 1.37% Zn, 2 g/t Ag from 416.5m
RD86P013	288.00	290.00	2.00	0.33	0.14	BDL	0.00	BDL	2m @ 0.14 g/t Au from 288m
RD86P013	302.00	303.00	1.00	1.34	1.35	BDL	0.00	BDL	1m @ 1.34% Cu, 1.35 g/t Au from 302m
RD86P013	336.00	337.00	1.00	1.01	1.22	BDL	0.00	0.00	1m @ 1.01% Cu, 1.22 g/t Au from 336m
RD86P013	365.00	366.00	1.00	0.78	0.04	BDL	0.00	0.00	1m @ 0.78% Cu from 365m
RD86P013	410.00	411.00	1.00	0.51	0.30	BDL	0.00	0.00	1m @ 0.51% Cu, 0.3 g/t Au from 410m
RD86P013	564.00	565.00	1.00	1.25	0.04	BDL	0.01	0.00	1m @ 1.25% Cu from 564m
RD86P015	398.00	399.00	1.00	0.07	0.22	0.50	0.00	0.01	1m @ 0.22 g/t Au 1 g/t Ag from 398m
RD86P015	402.00	403.00	1.00	0.51	0.01	2.00	0.01	0.00	1m @ 0.51% Cu, 2 g/t Ag from 402m
RD86P016	313.80	313.90	0.10	0.01	BDL	BDL	0.88	0.10	0.1m @ 0.88% Zn from 313.8m
RD86P016	324.30	324.40	0.10	0.00	0.10	BDL	0.01	0.00	0.1m @ 0.1 g/t Au from 324.3m
RD86P016	438.00	438.10	0.10	0.01	BDL	BDL	1.38	0.00	0.1m @ 1.38% Zn from 438m
RD86P016	449.80	451.80	2.00	0.00	BDL	BDL	0.72	0.02	2m @ 0.72% Zn from 449.8m
RD86P016	485.00	485.30	0.30	0.07	0.01	BDL	1.08	0.01	0.3m @ 1.08% Zn from 485m
RD86P016	498.70	498.90	0.20	0.01	0.06	BDL	0.57	0.01	0.2m @ 0.57% Zn from 498.7m
RD87P017	180.80	181.10	0.30	0.01	0.80	BDL	0.03	0.00	0.3m @ 0.8 g/t Au from 180.8m

Notes:

Results criteria for drill results composites is lead (Pb) \geq 0.5%, and / or zinc (Zn) \geq 0.5%, and / or copper (Cu) \geq 0.5%, and / or $gold (Au) \ge 0.1 g/t$. No minimum thickness.

Grey shaded cells - Selected Highlights (assays mentioned in text, labelled on maps). g/t = Grams per Tonne

NA = Not Assayed

BLD = Below Detection Limit.

Table 3: Summary	of Historic	Drill Hole C	Collars at the	Anabama Project.
------------------	-------------	--------------	----------------	------------------

Hole ID	Company	Reference Source	Hole Type	Easting	Northing	RL (mAHD)	Dip	Azimuth	Total Depth (m)
ARAB09021	Diatreme Resources Ltd	21	Р	433650	6372255	211	-90	0	63
ARAB09026	Diatreme Resources Ltd	21	Р	441703	6375783	178	-90	0	120
ARAB09027	Diatreme Resources Ltd	21	Р	433439	6371963	209	-90	0	102
ARAB09028	Diatreme Resources Ltd	21	Р	433395	6372067	210	-90	0	39
ARAB09028B	Diatreme Resources Ltd	21	Р	433392	6372073	210	-90	0	102
ARAB09029	Diatreme Resources Ltd	21	Р	433514	6372044	211	-90	0	93
ARAB09030	Diatreme Resources Ltd	21	P	433488	6372107	211	-90	0	99
ARAB09031	Diatreme Resources Ltd	21	P	433587	6372127	211	-90	0	96
ARAB09032	Diatreme Resources Ltd	21	Р	433611	63/20//	211	-68	158	60
ARAB09035	Diatreme Resources Ltd	21	P	433666	6372202	211	-90	0	99
ARAB09030	Diatreme Resources Ltd	21		433642	6372241	211	-90	0	114
ARAB09037	Diatreme Resources Ltd	21		433700	6372217	211	-90	0	90
ARAB09038	Diatreme Resources Ltd	21		433739	6272270	211	-90	0	102
ARAD09039	Diatromo Rosourcos Ltd	21		433045	6372/35	210	-90	0	102
ARAB09040 ARAB000/11	Diatreme Resources Ltd	21	Г	434001	6372266	200	-90	158	81
ARAB09041 ARAB09042	Diatreme Resources Ltd	21	P	434001	6372200	200	-00	158	60
ARAB09072	Diatreme Resources Ltd	21	RAR	432538	6371258	201	-90	0	13
ARC:0401	Diatreme Resources Ltd	21	RC.	433717	6372336	201	-90	0	288
ARC0404	Diatreme Resources Ltd	21	RC	433461	6372164	211	-90	0	288
CRD10	Carpentaria Exploration Co Ptv I td	22	P	433627	6372298	211	-55	144	174
CRD11	Carpentaria Exploration Co Pty Ltd.	22	P	439801	6369417	167	-60	293	174
CRD12	Carpentaria Exploration Co Ptv Ltd.	22	P	439736	6369442	168	-60	293	134
CRD14	Carpentaria Exploration Co Pty Ltd.	22	P	439963	6369711	167	-60	158	206
CRD3	Carpentaria Exploration Co Pty Ltd.	22	Р	432684	6371422	202	-60	144	150
CRD6	Carpentaria Exploration Co Pty Ltd.	22	Р	432617	6371511	204	-61	144	206
CRD7	Carpentaria Exploration Co Pty Ltd.	22	Р	433379	6372098	208	-55	144	158
CRD8	Carpentaria Exploration Co Pty Ltd.	22	Р	433433	6372026	207	-55	144	180
CRD9	Carpentaria Exploration Co Pty Ltd.	22	Р	433716	6372178	204	-54	144	118
LD12	Placer Exploration Ltd.	23	RC	433638	6372259	211	-55	158	119
LD13	Placer Exploration Ltd.	23	RC	433657	6372213	211	-55	158	112
LD14	Placer Exploration Ltd.	23	RC	433677	6372167	211	-55	158	100
LD15	Placer Exploration Ltd.	23	RC	433696	6372120	211	-55	158	119
LD16	Placer Exploration Ltd.	23	RC	433027	6371644	204	-60	158	140
LD17	Placer Exploration Ltd.	23	RC	433000	6371709	205	-60	158	119
LD18	Placer Exploration Ltd.	23	RC	432354	6371139	200	-60	158	119
LD20	Placer Exploration Ltd.	23	RC	433789	6372419	210	-60	158	150
LD21	Placer Exploration Ltd.	23	RC	433816	6372354	210	-60	158	150
LD22	Placer Exploration Ltd.	23	RC	433842	6372289	210	-60	158	144
LD23	Placer Exploration Ltd.	23	RC	433869	6372224	210	-60	158	150
LD24	Placer Exploration Ltd.	23	RC	433896	6372160	209	-60	158	150
LD20	Placer Exploration Ltd.	23	RU	432914	6271450	203	-00	100	120
	Placer Exploration Ltd.	23		432900	6371450	203	-00	150	120
	Placer Exploration Ltd.	23	PC	432011	6371562	203	-00	150	120
	Placer Exploration Ltd.	23	RC	432033	6371619	204	-00	158	132
	Placer Exploration Ltd.	23	RC	432798	6371674	204	-60	158	120
1 D33	Placer Exploration Ltd.	23	RC	432635	6371580	205	-60	158	120
1 D34	Placer Exploration Ltd	23	RC	432639	6371522	204	-60	158	120
1.035	Placer Exploration Ltd	23	RC	432665	6371467	204	-60	158	120
LD36	Placer Exploration Ltd.	23	RC	432707	6371414	203	-60	158	120
LD38	Placer Exploration Ltd.	23	RC	432755	6371304	201	-60	158	120
LD39	Placer Exploration Ltd.	23	RC	439666	6369217	177	-60	299	120
LD40	Placer Exploration Ltd.	23	RC	439720	6369186	178	-60	299	120
LD41	Placer Exploration Ltd.	23	RC	439775	6369156	180	-60	299	120
LD42	Placer Exploration Ltd.	23	RC	439828	6369130	180	-60	299	120
LD43	Placer Exploration Ltd.	23	RC	439861	63 <mark>69108</mark>	179	-60	299	120
LD44	Placer Exploration Ltd.	23	RC	<u>4396</u> 16	6369243	176	-60	299	70
LD48	Placer Exploration Ltd.	23	RC	439754	6369394	179	-60	299	70
LD49	Placer Exploration Ltd.	23	RC	439640	6369451	178	-60	299	95
LD51	Placer Exploration Ltd.	23	RC	439995	6369494	176	-60	299	100
LD53	Placer Exploration Ltd.	23	RC	433518	6372026	211	-60	158	70
LD54	Placer Exploration Ltd.	23	RC	433503	6372062	211	-60	158	74

LD56	Placer Exploration Ltd.	23	RC	433473	6372136	211	-60	158	76
LD57	Placer Exploration Ltd.	23	RC	433608	6372320	211	-65	158	311
LD60	Placer Exploration Ltd.	23	RC	433572	6371896	210	-60	158	112
LD62	Placer Exploration Ltd.	23	RC	433534	6371989	210	-60	158	110
LD63	Placer Exploration Ltd.	23	RC	433770	6372465	210	-60	158	112
LDD001	Placer Exploration Ltd.	23	RCD	433619	6372305	207	-55	158	87
RC95AB1	Placer Exploration Ltd.	24	RC	433285	6371805	207	-60	158	60
RC95AB12	Placer Exploration Ltd.	24	RC	433761	6372223	211	-60	158	63
RC95AB13	Placer Exploration Ltd.	24	RC	433742	6372269	211	-60	158	60
RC95AB14	Placer Exploration Ltd.	24	RC	433723	6372316	211	-60	158	60
RC95AB15	Placer Exploration Ltd.	24	RC	434077	6372245	207	-60	158	60
RC95AB16	Placer Exploration Ltd.	24	RC	434020	6372384	201	-60	158	60
RC95AB17	Placer Exploration Ltd.	24	RC	434000	6372430	208	-60	158	60
RC95AB2	Placer Exploration Ltd.	24	RC	433264	6371852	207	-60	158	60
RC95AB3	Placer Exploration Ltd.	24	RC	433246	6371900	207	-60	158	60
RC95AB4	Placer Exploration Ltd.	24	RC	433226	6371948	207	-60	158	60
RC95AB6	Placer Exploration Ltd.	24	RC	433441	6371950	207	-60	158	60
RC95AB7	Placer Exploration Ltd.	24	RC	433403	6372043	210	-60	158	60
RC95AB8	Placer Exploration Ltd.	24	RC	433596	6372101	205	-60	158	60
RC95AB9	Placer Exploration Ltd.	24	RC	433576	6372147	211	-60	158	60
RC95WR2	Placer Exploration Ltd.	24	RC	439662	6369098	177	-60	299	60
WR2	Carpentaria Exploration Co Pty Ltd.	25	RC	439970	6369692	176	-65	158	80

Notes:

Co-ordinates are in GDA94 Zone 54.

Hole Types - DD (Diamond Drillhole), RCD (RC top, Diamond tail), RC (Reverse Circulation), P (Percussion), RAB (Rotary Air Blast).

Hole ID	From (m)	To (m)	Width	Cu %	Au q/t	Intercept
ARAB09021	12	19.5	7.5	0.64	0.09	7.5m @ 0.64% Cu, 0.09 g/t Au from 12m
ARAB09021	27	30	3	0.54	0.07	3m @ 0.54% Cu, 0.07 g/t Au from 27m
ARAB09021	34.5	39	4.5	0.49	0.11	4.5m @ 0.49% Cu, 0.11 g/t Au from 34.5m
ARAB09021	45	54	9	0.53	0.09	9m @ 0.53% Cu, 0.09 g/t Au from 45m
ARAB09026	12	15	3	0.00	0.12	3m @ 0.12 g/t Au from 12m
ARAB09026	30	33	3	0.00	0.10	3m @ 0.1 g/t Au from 30m
ARAB09027	87	93	6	0.18	0.55	6m @ 0.55 g/t Au from 87m
ARAB09028	3	6	3	0.20	0.10	3m @ 0.1 g/t Au from 3m
ARAB09028	9	18	9	0.52	1.76	9m @ 0.52% Cu, 1.76 g/t Au from 9m
ARAB09028	24	39	15	0.42	0.13	15m @ 0.13 g/t Au from 24m
ARAB09028B	6	15	9	0.22	0.09	9m @ 0.09 g/t Au from 6m
ARAB09028B	21	48	27	0.67	0.10	27m @ 0.67% Cu, 0.1 g/t Au from 21m
ARAB09028B	84	90	6	0.68	0.07	6m @ 0.68% Cu, 0.07 g/t Au from 84m
ARAB09028B	96	99	3	0.05	0.49	3m @ 0.49 g/t Au from 96m
ARAB09029	18	90	72	0.90	0.22	72m @ 0.9% Cu, 0.22 g/t Au from 18m
Including	42	75	33	1.06	0.29	33m @ 1.06% Cu, 0.29 g/t Au from 42m
ARAB09030	30	33	3	0.88	0.10	3m @ 0.88% Cu, 0.1 g/t Au from 30m
ARAB09031	6	9	3	0.10	0.34	3m @ 0.1% Cu, 0.34 g/t Au from 6m
ARAB09031	24	36	12	0.70	0.07	12m @ 0.7% Cu, 0.07 g/t Au from 24m
ARAB09031	51	84	33	0.83	0.21	33m @ 0.83% Cu, 0.21 g/t Au from 51m
ARAB09032	45	48	3	0.03	1.14	3m @ 1.14 g/t Au from 45m
ARAB09035	6	15	9	0.42	0.20	9m @ 0.42% Cu, 0.2 g/t Au from 6m
ARAB09035	57	63	6	0.76	0.00	6m @ 0.76% Cu from 57m
ARAB09035	75	81	6	0.67	0.06	6m @ 0.67% Cu, 0.06 g/t Au from 75m
ARAB09036	3	12	9	0.71	0.01	9m @ 0.71% Cu from 3m
ARAB09036	39	57	18	0.64	0.08	18m @ 0.64% Cu, 0.08 g/t Au from 39m
ARAB09036	90	96	6	0.59	0.06	6m @ 0.59% Cu from 90m
ARAB09037	12	75	63	0.61	0.06	63m @ 0.61% Cu from 12m
ARAB09038	9	12	3	0.22	0.10	3m @ 0.1 g/t Au from 9m
ARAB09038	54	78	24	0.51	0.06	24m @ 0.51% Cu, 0.06 g/t Au from 54m
ARAB09038	84	87	3	0.36	0.11	3m @ 0.11 g/t Au from 84m
ARAB09039	9	24	15	0.51	0.52	15m @ 0.51% Cu, 0.52 g/t Au from 9m
ARAB09039	42	60	18	0.57	0.09	18m @ 0.57% Cu, 0.09 g/t Au from 42m
ARAB09039	/2	84	12	0.70	0.09	12m @ 0.7% Cu from 72m
ARAB09040	15	18	3	0.07	0.31	3m @ 0.31 g/t Au from 15m
ARAB09041	39	45	6	0.15	0.11	6m @ 0.11 g/t Au from 39m
ARAB09041	51	54	3	0.12	0.10	3m @ 0.1 g/t Au from 51m
ARAB09042	30	42	0	0.00	0.10	6m @ 0.1 g/t Au from 36m
ARAB09071	12	13	10	0.05	0.01	1m @ 0.05% Cu from 12m
ARC0401	155	40	40	0.00	0.13	1m @ 0.83% Cu from 155m
ARC0401	201	236	35	0.03	0.00	35m @ 0.66% Cu from 201m
Including	201	230	33	0.00	0.61	4m @ 0.03% Cu 0.61 a/t Au from 208m
	200	68	4	0.95	0.01 NA	1m @ 0.03% Cu from 67m
	87	88	1	0.33		1m @ 0.7% Cu from 87m
	1/2	145	ر ۱	0.70		3m @ 0.68% Cu from 142m
ARC0404	165	184	19	0.00	NΔ	19m @ 0.66% Cu from 165m
ARC0404	247	248	1	0.60	NA	1m @ 0.64% Cu from 247m
CRD10	48	172	124	0.62	NA	124m @ 0.62% Cu from 48m
Including	86	98	12	1.89	NA	12m @ 1.89% Cu from 86m
CRD11	94	100	6	1.53	NA	6m @ 1.53% Cu from 94m
CRD11	120	124	4	0.57	NA	4m @ 0.57% Cu from 120m
CRD12	72	74	2	0.80	NA	2m @ 0.8% Cu from 72m
CRD12	84	86	2	0.50	NA	2m @ 0.5% Cu from 84m
CRD12	92	96	4	0.86	NA	4m @ 0.86% Cu from 92m
CRD14	120	122	2	1.75	NA	2m @ 1.75% Cu from 120m
CRD3	108	112	4	1.33	NA	4m @ 1.33% Cu from 108m
CRD6	2	4	2	0.55	NA	2m @ 0.55% Cu from 2m
CRD7	34	36	2	0.55	NA	2m @ 0.55% Cu from 34m
CRD7	44	84	40	0.50	NA	40m @ 0.5% Cu from 44m
CRD7	106	108	2	0.55	NA	2m @ 0.55% Cu from 106m
CRD8	34	36	2	0.67	NA	2m @ 0.67% Cu from 34m
CRD8	48	50	2	1.85	NA	2m @ 1.85% Cu from 48m
CRD8	80	90	10	0.84	NA	10m @ 0.84% Cu from 80m
CRD8	100	102	2	0.50	NA	2m @ 0.5% Cu from 100m

CRD8	108	110	2	0.60	NA	2m @ 0.6% Cu from 108m
CRD9	8	10	2	0.58	NA	2m @ 0.58% Cu from 8m
CRD9	24	30	6	0.63	NA	6m @ 0.63% Cu from 24m
LD12	16	40	24	0.58	0.08	24m @ 0.58% Cu, 0.1 g/t Au from 16m
LD12	64	66	2	0.11	0.40	2m @ 0.4 g/t Au from 64m
LD12	114	119	5	0.56	0.01	5m @ 0.56% Cu from 114m
LD13	8	20	12	0.67	0.57	12m @ 0.67% Cu, 0.6 g/t Au from 8m
including	16	20	4	1.58	0.05	4m @ 1.58% Cu from 16m
LD13	24	26	2	0.30	1.15	2m @ 1.2 g/t Au from 24m
LD13	38	42	4	0.33	1.93	4m @ 1.9 g/t Au from 38m
LD13	52	72	20	0.54	0.10	20m @ 0.54% Cu, 0.1 g/t Au from 52m
LD14	22	40	18	0.41	0.51	18m @ 0.5 g/t Au from 22m
LD15	104	106	2	0.46	0.14	2m @ 0.1 g/t Au from 104m
LD16	34	40	6	0.16	0.16	6m @ 0.16 g/t Au from 34m
LD16	54	58	4	0.50	0.87	4m @ 0.5% Cu, 0.9 g/t Au from 54m
LD17	26	28	2	0.06	0.29	2m @ 0.29 g/t Au from 26m
LD17	58	60	2	0.04	0.16	2m @ 0.16 g/t Au from 58m
LD18	80	82	2	0.09	0.16	2m @ 0.2 g/t Au from 80m
LD20	54	62	8	0.22	0.16	8m @ 0.2 g/t Au from 54m
LD21	8	9	1	0.19	0.15	1m @ 0.2 g/t Au from 8m
LD21	15	21	6	0.52	0.07	6m @ 0.52% Cu, 0.1 g/t Au from 15m
LD21	28	30	2	0.31	0.14	2m @ 0.1 g/t Au from 28m
LD21	90	93	3	0.66	0.01	3m @ 0.66% Cu from 90m
LD21	122	130	8	0.37	0.10	8m @ 0.1 g/t Au from 122m
LD21	136	138	2	0.34	0.15	2m @ 0.2 g/t Au from 136m
LD21	147	149	2	0.76	0.05	2m @ 0.76% Cu from 147m
LD22	0	2	2	0.06	0.22	2m @ 0.2 g/t Au from 0m
LD22	10	12	2	0.42	1.04	2m @ 1 a/t Au from 10m
LD22	12	18	6	0.60	0.05	6m @ 0.6% Cu from 12m
LD22	18	24	6	0.23	0.35	6m @ 0.3 g/t Au from 18m
LD22	32	36	4	0.53	0.16	4m @ 0.2 g/t Au from 32m
LD22	54	56	2	0.26	0.19	2m @ 0.2 g/t Au from 54m
LD23	28	30	2	0.28	0.14	2m @ 0.1 g/t Au from 28m
LD24	42	44	2	0.56	BLD	2m @ 0.56% Cu from 42m
LD24	44	54	10	0.33	0.37	10m @ 0.4 g/t Au from 44m
1 D24	116	118	2	0.39	0.13	$2m \oslash 0.1 \text{ g/t}$ Au from 116m
LD26	64	66	2	0.01	0.10	$2m \oslash 0.1 \text{ g/t}$ Au from 64m
LD26	72	74	2	0.03	0.14	2m @ 0.1/t Au from 72m
LD27	50	56	6	0.35	0.17	6m @ 0.2 g/t Au from 50m
LD27	62	64	2	0.06	0.17	2m @ 0.2 g/t Au from 62m
LD27	74	76	2	0.06	0.24	2m @ 0.2 g/t Au from 74m
LD28	102	104	2	0.09	0.10	2m @ 0.1 g/t Au from 102m
LD29	16	20	4	0.15	0.26	4m @ 0.3 g/t Au from 16m
LD29	50	52	2	0.11	0.19	2m @ 0.2 g/t Au from 50m
LD30	16	18	2	0.02	0.17	2m @ 0.2 g/t Au from 16m
1 D30	90	92	2	1.26	0.07	2m @ 1 26% Cu 0 1 a/t Au from 90m
LD31	14	16	2	0.31	1.10	2m @ 1.1 g/t Au from 14m
LD31	34	36	2	0.12	0.20	2m @ 0.2 g/t Au from 34m
LD33	4	6	2	0.05	0.13	2m @ 0.1 g/t Au from 4m
LD33	44	46	2	0.97	0.33	2m @ 0.97% Cu. 0.3 g/t Au from 44m
LD34	84	86	2	0.02	0.56	2m @ 0.6 g/t Au from 84m
LD35	66	68	2	0.00	0.64	2m @ 0.64 g/t Au from 66m
LD36	76	78	2	0.51	0.04	2m @ 0.51% Cu from 76m
LD38	24	26	2	0.44	0.56	2m @ 0.6 g/t Au from 24m
LD38	118	120	2	0.00	0.17	2m @ 0.2 g/t Au from 118m
1 D39	39	52	13	0.07	0.65	13m @ 0.65 g/t Au from 39m
LD39	58	66		0.06	0.21	8m @ 0.21 g/t Au from 58m
LD40	4	6	2	0.16	0.27	2m @ 0.27 g/t Au from 4m
LD 10	1	14	13	0.96	0.02	13m @ 0.96% Cu from 1m
I D41	84	86	2	0.00	0.02	2m @ 0.11 g/t Au from 84m
I D42	66	68	2	0.51	0.01	2m @ 0.51% Cu from 66m
1 D43	14	16	2	0.51	BLD	2m @ 0.51% Cu from 14m
1 D43	84	88	2	0.01	0.21	2m @ 0 21 g/t Au from 84m
I D44	42	51	9	0.01	0.21	9m @ 0.36 g/t Au from 42m
I D48	14	22	8	0.06	0.00	$8m \oslash 0.1 \text{ a/t Au from 14m}$
1 D48	20	22	2	0.00	0.10	$2m \oslash 0.17 \text{ g/t/} \text{ all from } 30m$
	00 02	0/	2	RID	0.17	$2m \otimes 0.17$ gr(7.0 m) of 0.011 $2m \otimes 0.12$ g/t Au from $0.02m$
	52	J-1	۷		0.12	

LD51	34	38	4	0.01	0.17	4m @ 0.17 g/t Au from 34m
1053	24	49	25	0.68	0.38	25m @ 0.68% Cu 0.4 g/t Au from 24m
LD54	28	74	46	0.54	0.06	46m @ 0.54% Cu, 0.1 g/t Au from 28m
LD56	66	68	2	0.17	0.13	2m @ 0.1 g/t Au from 66m
LD56	74	76	2	0.19	0.16	2m @ 0.2 g/t Au from 74m
LD57	108	110	2	0.10	0.11	$2m \otimes 0.2$ growth from 108m
LD57	114	116	2	0.45	0.11	2m @ 0.1 g/t Au from 114m
1.057	123	127	4	0.56	0.08	4m @ 0.56% Cu. 0.1 a/t Au from 123m
1.057	135	154	19	0.00	0.08	19m @ 0.79% Cu, 0.1 g/t Au from 135m
LD57	190	194	4	0.73	0.06	4m @ 0.73% Cu 0.1 g/t Au from 190m
LD57	198	202	4	0.46	0.09	4m @ 0.1 g/t Au from 198m
LD57	206	213	7	0.44	0.00	7m @ 0.1 g/t Au from 206m
1.057	218	223	5	0.95	0.08	5m @ 0.95% Cu 0.1 g/t Au from 218m
LD57	235	236	1	0.00	0.08	1m @ 0.75% Cu, 0.1 g/t Au from 235m
LD57	200	250	2	0.76	0.00	2m @ 0.76% Cu from 248m
1 D60	36	38	2	0.00	0.02	2m @ 0.15 a/t Au from 36m
LD62	80	82	2	0.00	0.10	2m @ 0.66 g/t Au from 80m
1 D62	108	110	2	0.00	0.00	$2m \otimes 0.05$ g/t/ a irom 108m
LD63	6	10	4	0.00	0.10	4 m @ 0.35 g/r/u from 6m
	76	78	2	0.10	BLD	2m @ 0.52% Cu from 76m
	10	10	2	0.32	0.06	2m @ 0.72% Cu 0.1 a/t Au from 10m
RC95AB1	58	60	2	0.77	0.00	2m @ 0.95% Cu = 0.3 a/t Au from 58m
PC05AB12	2	52	50	0.00	0.20	50m @ 0.60% Cu from 2m
including	10	JZ 1/	30	1 32	BLD	4m @ 1.32% Cu from 10m
	6	3/	28	0.96	0.06	28m @ 0.96% Cu 0.1 g/t Au from 6m
RC05AB13	36	38	20	0.30	0.00	$2 \text{ m} \otimes 0.3 \text{ a/t}$ Au from 36m
DC05AD13	30	24	2	0.22	0.30	2m @ 0.20 g/t Au from 22m
DC05AD14	22	2 4 60	2	0.05	0.29	$2111 \oplus 0.23 \text{ g/r} \text{Au 110111 } 22111$
RC95AD14	10	20	22	0.07	0.15	2211 @ 0.07 % Cu, 0.2 g/t Au 1011 3011
DC05AD15	12	1/	20	0.04	0.05	$2011 \oplus 0.04\%$ Cu 1011 1211
DC05AD10	12	14	Z	0.52	0.00	2111 @ 0.32 % Cu, 0.1 g/LAU 110111 12111
DC05AD17	28	30	4	0.40	0.24 PLD	$2m \otimes 0.52\%$ Cu from $28m$
	20	50	2	0.52		2m @ 0.52% Cu II0III 20II
	24	30	<u> </u>	0.04	0.03	211 @ 0.34 % Cu 11011 3411
RC95AD5	20	32	4	0.12	0.20	2m @ 0.66% Cu from 29m
	30	40	2	0.00	0.11	2m @ 0.11 a/t Au from 40m
RC95AB5	40	42	<u> </u>	0.23	0.11	2111 (@ 0.11 g/t Au 110111 40111
RC95AB4	40	24	4	0.10	0.20	4111 (2) 0.2 g/L AU 110111 40111 10m @ 0.599/ Cu from 24m
RC95AB0	24		10	0.00	0.01	10111 @ 0.50% Cu 110111 24111
	50	52	2	0.50		2m @ 0.5% Cu itom 50m
RC95AD7	50	52 50	2	0.00	0.10	2m @ 0.1 g/t Au from 56m
	00	0C	2	0.04	0.10	2111 (@ 0.1 g/LAU 110111 50111
	0	14	0	0.50	BLD	0111 (2) 0.50% CU 110111 0111 2m @ 0.57% Cu from 20m
RC95AB8	30	32	2	0.57	BLD	2m @ 0.57% Cu from 30m
RC95AB9	14	22	0	0.09	BLD 0.47	
RC95AB9	22	24	2	0.28	0.4/	2111 (2) U.47 (3/1 AU from 22m
RC95AB9	30	52	16	0.65	0.36	10111 (@ 0.05% CU, 0.4 g/t Au from 36m
RC95WR2	44	46	2	0.51	NA	
KU95WK2	48	50	2	0.53	BDL	
WR2	20	22	2	0.70	NA	2m @ 0.7% Cu from 20m
WR2	34	38	4	0.64	NA	4m @ 0.64% CU from 34m

Notes:

Results criteria for drill results composites is gold (Au) ≥ 0.1 g/t and / or copper (Cu) $\geq 0.5\%$. No minimum thickness. Grey shaded cells - Selected Highlights (assays mentioned in text, labelled on maps).

NA = Not Assayed

BLD = Below Detection Limit.

g/t = Grams per Tonne

Table 5: References To Previous Explorers' Drill Results.

Reference Source	Company	Year	Report Reference (Geological Survey Number)	Link to Source
1	Teck Australia Pty Ltd	2011	Digs Report RE0001244	https://search.geoscience.nsw.gov.au/report/RE0001244
2	Teck Australia Pty Ltd	2012	Digs Report RE0002791	https://search.geoscience.nsw.gov.au/report/RE0002791
3	Broken Hill South Ltd	1974	Digs Report R00023185	https://search.geoscience.nsw.gov.au/report/R00023185
4	Platsearch NL	1996	Digs Report R00002335	https://search.geoscience.nsw.gov.au/report/R00002335
5	Platsearch NL	1996	Digs Report R00002639	https://search.geoscience.nsw.gov.au/report/R00002639
6	Platsearch NL	1997	Digs Report R00020973	https://search.geoscience.nsw.gov.au/report/R00020973
7	Platsearch NL	2003	Digs Report R00047909	https://search.geoscience.nsw.gov.au/report/R00047909
8	Platsearch NL	2004	Digs Report R00029651	https://search.geoscience.nsw.gov.au/report/R00029651
9	Platsearch NL	2007	Digs Report R00041710	https://search.geoscience.nsw.gov.au/report/R00041710
10	Teck Cominco Australia Pty Ltd	2008	Digs Report R00079594	https://search.geoscience.nsw.gov.au/report/R00079594
11	Teck Cominco Australia Pty Ltd	2009	Digs Report R00037719	https://search.geoscience.nsw.gov.au/report/R00037719
12	Mt Isa Mines Ltd	1986	Digs Report R00008820	https://search.geoscience.nsw.gov.au/report/R00008820
13	Platsearch NL	1999	Digs Report R00042163	https://search.geoscience.nsw.gov.au/report/R00042163
14	Platsearch NL	2000	Digs Report R00019447	https://search.geoscience.nsw.gov.au/report/R00019447
15	CRA Exploration Pty Ltd	1985	Digs Report R00014362	https://search.geoscience.nsw.gov.au/report/R00014362
16	CRA Exploration Pty Ltd	1985	Digs Report R00014363	https://search.geoscience.nsw.gov.au/report/R00014363
17	CRA Exploration Pty Ltd	1987	Digs Report R00005506	https://search.geoscience.nsw.gov.au/report/R00005506
18	CRA Exploration Pty Ltd	1986	Digs Report R00005531	https://search.geoscience.nsw.gov.au/report/R00005531
19	CRA Exploration Pty Ltd	1987	Digs Report R00005532	https://search.geoscience.nsw.gov.au/report/R00005532
20	CRA Exploration Pty Ltd	1988	Digs Report R00008197	https://search.geoscience.nsw.gov.au/report/R00008197
21	Diatreme Resources Ltd	2008	SARIG report ENV11880	https://mer-env.s3.amazonaws.com/ENV11880.pdf
22	Carpentaria Exploration Co. Pty Ltd	1979-1984	SARIG report ENV03608	https://mer-env.s3.amazonaws.com/ENV03608.pdf
23	Placer Exploration Ltd.	1988-1993	SARIG report ENV08011	https://mer-env.s3.amazonaws.com/ENV08011.pdf
24	Placer Exploration Ltd.	1993-1997	SARIG report ENV08787	https://mer-env.s3.amazonaws.com/ENV08787.pdf
25	Carpentaria Exploration Co. Pty Ltd	1973-1979	SARIG report ENV03018	https://mer-env.s3.amazonaws.com/ENV03018.pdf

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data.

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	All sampling and results reported in this announcement are from previous explorers and are from RC, percussion, RAB or diamond drilling.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Information regarding drilling data has been taken from original reports as per Table 5 "References To Previous Explorers Drill Results" included in the body of this release.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any 	Drilling was completed between 1973 and 2012.
	measurement tools or systems used.	The majority of samples came from diamond core. Sample weight, quality, collection method and condition were generally logged at the time of collection and mostly reported with the available data. It is assumed samples were dispatched using industry standard chain of custody documents to track samples.
		Sample methods and sampling intervals / composites varied by company. Standard industry sampling and lab techniques were used. Anomalous composite results were often followed up and some companies did some QAQC re-assaying.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented 	No recent drilling is reported in this announcement. None of the drilling was completed by Red Hill Minerals and it is being reported with the intention of highlighting the prospectivity of the project area from previous exploration work.
	and if so, by what method, etc).	Historical drilling varied from RC, percussion, RAB to diamond drilling. Bit sizes varied by company but generally included HQ and NQ diamond holes.
		Information regarding drilling data has been taken from original reports as per Table 5 "References To Previous Explorers Drill Results" included in the body of this release.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Logging contained information related to sampling and varied by company.
 Measures are taken to maxin ensure the representative natu Whether a relationship exists and grade and whether samp due to preferential loss/gain of 	 Measures are taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Diamond core recovery was recorded however sample recovery for RAB, RC and percussion was rarely recorded in historic data.
		Standard industry practise notes cavities or intervals with unusual sample return.
		Given the historic nature and early stage of the drillholes it is not possible to provide any details in relation to sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Chip samples and / or diamond core were geologically logged for the entire length of the drillhole.
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Logging is both qualitative and semi-quantitative in nature.
	Whether logging is qualitative or quantitative in nature. Core (or costean channel, etc) photography	Logging templates and logging codes varied by company.
	• The total length and percentage of the relevant	No Mineral Resource estimate is being reported.
	intersections logged.	Geological logging data is available in the original reports as per Table 5 "References To Previous Explorers Drill Results" included in the body of this release.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	Samples were generally collected in pre-labelled calico bags (diamond core was generally split/cut onsite). Generally half core was taken.
 If non-core, whether riffled, tube sampled, rotary spant preparation If non-core, whether riffled, tube sampled, rotary spant whether sampled wet or dry. For all sample types, the nature, quality appropriateness of the sample preparation techniqu Quality control procedures adopted for all sub-sastages to maximise the representivity of samples. Measures taken to ensure that the sample representative of the in situ material collected, inclusion instance results for field duplicate/second-half samples. 	 In non-core, whether nimed, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique 	Some of the diamond holes are available in the New South Wales Broken Hill or Londonderry and / or South Australia Reference Drill Core Libraries.
	 Quality control procedures adopted for all sub-sampling stages to maximise the representivity of samples. Measures taken to ensure that the sampling is 	In some cases composite samples were collected initially for analysis, and significant zones (varied by company) were resampled using the original samples.
	representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Most companies stored samples on site prior to being transported to the

Criteria	JORC Code explanation	Commentary
	• Whether sample sizes are appropriate to the grain size of	laboratory. Wet samples were allowed to dry before being processed.
	the material being sampled.	The majority of samples being reported were from diamond holes and were being collected for first pass exploration purposes.
		Samples were sorted, dried and weighed at the laboratory where they were then crushed and riffle split to obtain a sub-fraction for pulverisation.
		Field duplicates were collected and certified reference material data was submitted with drill samples by some companies. The frequency of this varied by each of the previous explorers but generally followed industry best practise.
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	Historical analyses reported are not all defined. Where defined the methods listed are:
	 technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (or 	Amdel Labs (IC2E, IC3E, AA7, AA9, IC4, FA1, FA3), A.C.S. Laboratories (AAS), ALS (Au-AA22, Cu-OG62, F-ELE81a, F-ELE82, ME-MS61r, ME-XRF12, OA-GRA05t, Pb-OG62, S-OG62, Zn-OG62), Classic Comlabs (AAS, XRF) and Resource Development Labs (Aqua Regia/CFA, ICP, AAS).
	standards, blanks, duplicates, external laboratory checks)	Digestion methods are not specified in available data.
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC data is unknown however major laboratories were used so it is assumed best practise was met.
		Field duplicates were collected and certified reference material data was submitted with drill samples by some companies. The frequency of this varied by each of the previous explorers but generally followed industry best practise.
Verification of sampling and assaying	 The verification of significant intersections by eithe independent or alternative company personnel. The use of twinned holes. 	Some verification of significant intersections and sampling/assaying has occurred with the re-assaying of some intervals by subsequent explorers.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) 	Twinned holes are not required at this early stage.
	 Discuss any adjustments to assay data. 	Depending on the date of work assay data results were generally sent either physically or electronically in csv and pdf format.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Only historical drilling is reported in this announcement. A variety of survey methods and differing levels of accuracy dependant on the company and the year the drilling occurred.
		Some drill pad locations have been verified as they are still visible in aerial imagery as they have not been rehabilitated.
		Where captured downhole surveys were completed using a gyroscope. These reports and datafiles are provided in the individual company reports - refer Table 5 "References To Previous Explorers Drill Results" included in the body of this release.
		The Curnamona Project falls within GDA94 Zone 54 for horizontal data and AHD for vertical data.
		No Mineral Resource estimate is being reported.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	Drilling is considered early stage and spacing is variable due to the first pass assessment of the area and historical results from other explorers that are being reported.
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Sample compositing has not been applied to historic results reported. RAB, percussion and RC drilling as collected at $2 - 6m$ intervals depending on the company and where appropriate.
		Drill data spacing and distribution is not sufficient to establish a Mineral Resource estimate.
Orientation of data in relation	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the 	Due to the early-stage exploratory nature of the drilling and mineralisation being folded and faulted, and in areas of deep cover, the orientation of historic drillholes may not be at an optimal intersection
	. are readeneng between the anning chontation and the	

Criteria	JORC Code explanation	Commentary
to geological	orientation of key mineralised structures is considered to	angle.
structure	have introduced a sampling bias, this should be assessed and reported if material.	Historic drillholes were drilled perpendicular to mineralisation where possible, otherwise holes were drilled vertical or at varying angles to determine stratigraphy and mineralisation. Future drilling will be optimized to intersect the mineralisation at right angles where possible.
Sample security	The measures taken to ensure sample security.	Samples were generally kept onsite until taken to transport depot for dispatch to the lab. Consignment numbers were used by the previous explorers and the samples delivered directly to an analytical lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed by Red Hill Minerals on the historical lab assay and sampling data (for the physical samples referred to in this announcement).

Section 2 Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	The drillholes reported in this announcement are located on Peel Far West Pty Ltd tenure that Silverton Minerals Pty Ltd, a subsidiary of Red Hill Minerals Limited, is earning up to 75% in by spending \$6.5M within 5 years.
status	native title interests, historical sites, wilderness or national park and environmental settings	There are no known impediments to operate in the area.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Broken Hill Previous explorers over the Broken Hill Project included CRA Exploration during the 1980s, Platsearch NL during the 1990s and early 2000s and Teck Australia from 2011 until 2019.
		<u>Anabama</u> Previous explorers over the Anabama Project, including Carpentaria Exploration Co Pty Ltd, Placer Exploration Ltd and Diatreme Resources Limited, concentrated on the volcanic associated copper(-gold) mineralisation present at the Anabama and the White Rocks prospects.
Geology	Deposit type, geological setting and style of mineralisation.	Broken Hill The Project area occupies the southeastern portion of the Curnamona Province, an ovoid-shaped craton of Paleoproterozoic to Mesoproterozoic rocks of the Willyama Supergroup. The Willyama Supergroup is informally subdivided into a lower and upper package. The lower Willyama Supergroup comprises the Curnamona and Thackaringa Groups and is considered prospective for shear hosted copper and gold and cobalt mineralisation as well as having iron oxide copper-gold potential. There is a regionally extensive redox boundary that separates the upper and lower Willyama Supergroup.
		The upper Willyama Supergroup comprises the Saltbush Group, Broken Hill Group, Sundown Group, Paragon Group and Strathearn Group. Sedimentary exhalative and other genetically related base metal mineralisation models are typically formed in fault bounded sedimentary basins associated with feeder zones and the upper Willyama Supergroup is considered prospective to host these deposit types. Stratabound MVT mineralisation occurs with replacement of primarily carbonate minerals within the younger Adelaidean sediments.
		Anabama The Anabama Project is located in eastern South Australia about 140km southwest of Broken Hill, NSW, within the Olary Province. The project contains the bimodal Boucat Volcanics which host the Anabama and White Rocks historical copper workings and part of the NE-SW trending Anabama-Redan shear zone, which separates the Boucat Volcanics from the Umberatana Group sediments. The southern part of the project is covered by Murray Basin sediments which are considered prospective for accumulation of beavy mineral sands.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All relevant drill-hole information can be found in the JORC Table Section 1 – "Sampling techniques", "Drilling techniques", "Drill Sample Recovery" and the drilling collar and significant intercepts Tables 1, 2, 3 and 4 included within the body of this release.
Data aggregation	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations	Reported intercepts for the targets discussed in this report are based on the following:
methods	(eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Broken Hill Deputy a site is for drill assults composited is lead (Db) $> 0.5\%$ and (or
 Where age high grade the proced and some be shown i The assu equivalent 	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated 	Results criteria for drill results composites is lead (Pb) \ge 0.5%, and / or zinc (Zn) \ge 0.5%, and / or copper (Cu) \ge 0.5%, and / or gold (Au) \ge 0.1 g/t. No minimum thickness.
	 and some typical examples of such aggregation should be shown in detail. The assumptions used for any reporting of metal. 	Anabama Results criteria for drill results composites is gold (Au) \geq 0.1 g/t and / or copper (Cu) \geq 0.5%. No minimum thickness.
	equivalent values should be clearly stated.	No upper cuts have been applied. No metal equivalent values are used. Intervals are weighted based on their downhole length.
		Table 5 "References To Previous Explorers Drill Results" included in the body of this release provides links to the source information.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Quoted mineralised intercepts are downhole lengths, true widths are not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Location maps of reported intercepts and a type section are included in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other material information or data to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Historical results are being used to assist with planning future work that may include geophysical surveys, soil sampling, heritage surveys and drilling to assess new target areas as well as lateral and depth extensions to these results.

