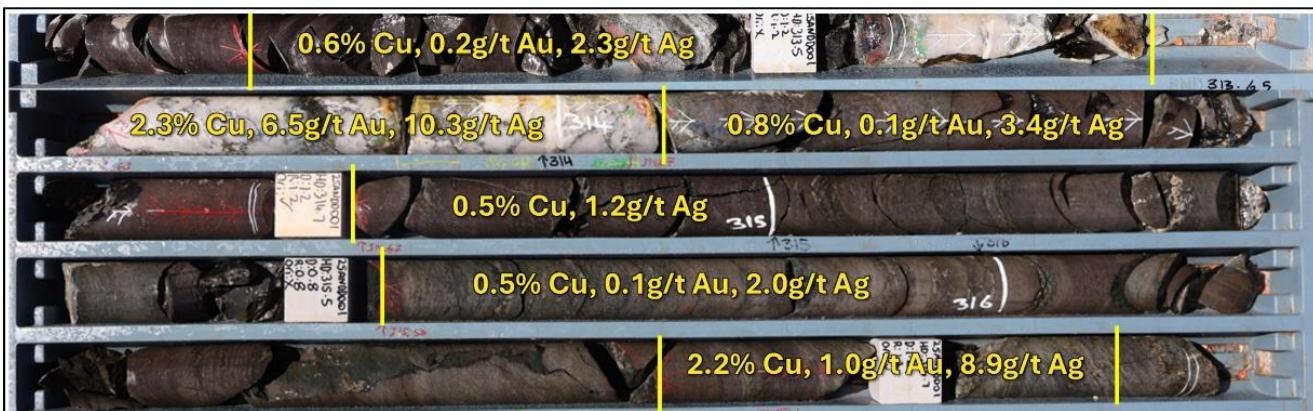


27 January 2026


EXPLORATION UPDATE: MAIDEN EXPLORATION DRILLING RESULTS CONFIRM COPPER-GOLD AT THE ANABAMA TARGET IN SOUTH AUSTRALIA

Red Hill Minerals Limited (ASX: RHI) (Red Hill or Company) is pleased to report the first results of its maiden diamond drilling program at the Anabama Copper-Gold Project in South Australia. The Anabama Project forms part of the Company's Curnamona Earn-In Joint Venture with Peel Mining Limited (ASX: PEX)¹.

Key Points:

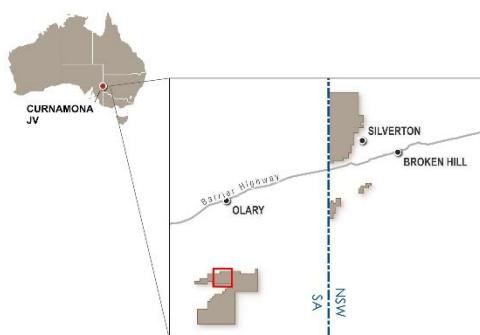
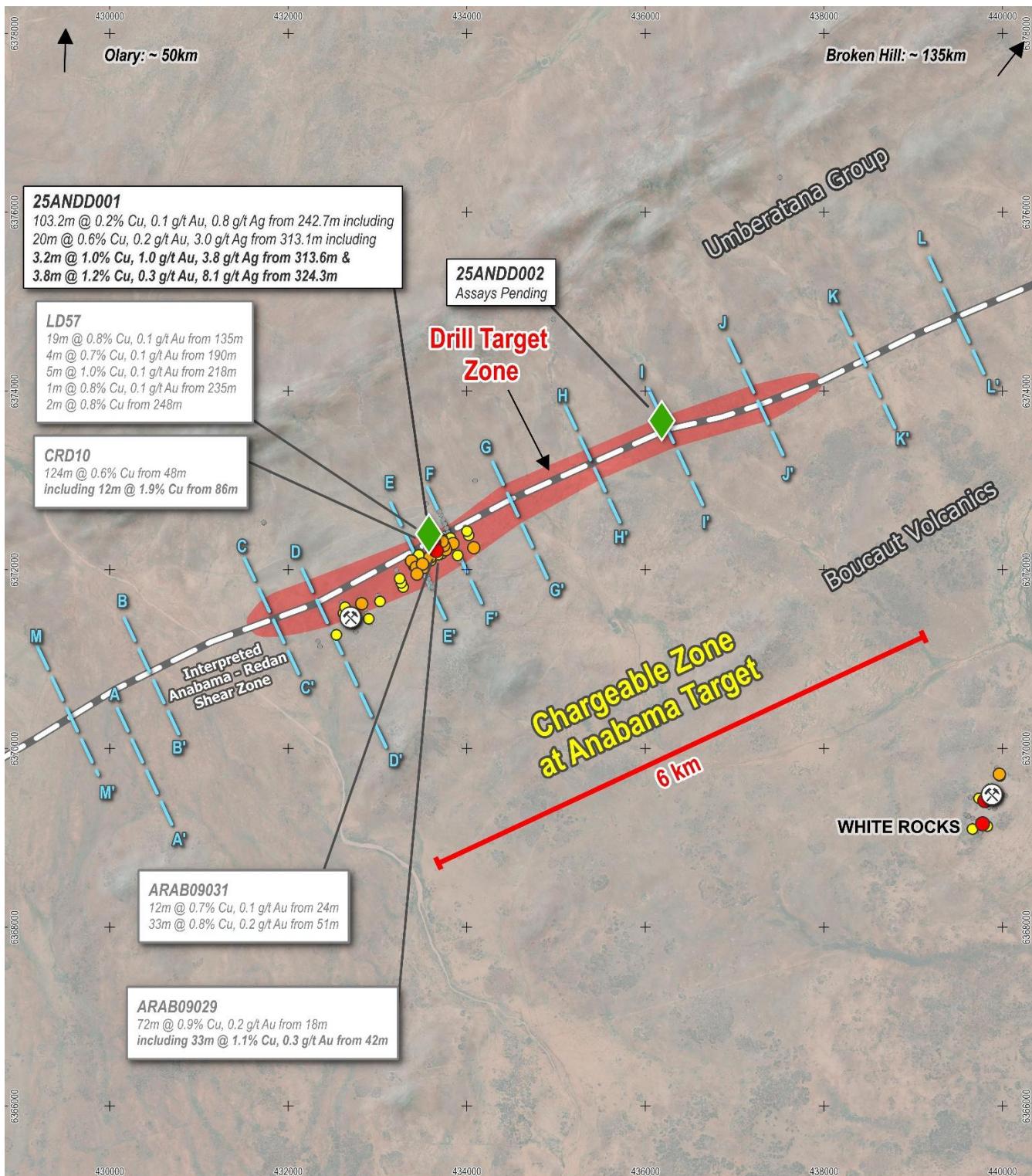


- Assays have been received from the first of two diamond drillholes that were drilled as part of a 945.5 metre program to test copper-gold mineralisation along the Anabama-Redan Shear Zone.
- Drillholes were planned to verify historic copper and gold intercepts, test mineralisation at depth beneath historic drilling, as well as test a chargeability anomaly along strike of the Anabama-Redan Shear Zone, generated from the 20.4 line kilometre Induced Polarisation (IP) survey previously completed by the Company⁴.
- Assay results received from diamond drillhole **25ANDD001** has confirmed copper-gold mineralisation is hosted in fresh bedrock and has extended mineralisation beneath the bottom of historic drillhole CRD10 by 130 metres with assays from **25ANDD001** including:
 - **20.0 metres at 0.6% copper, 0.2 g/t gold and 3.0 g/t silver from 313.1 metres, including**
 - **3.2 metres at 1.0% copper, 1.0 g/t gold, 3.8 g/t silver from 313.6 metres, and**
 - **3.8 metres at 1.2% copper, 0.3 g/t gold, 8.1 g/t silver from 324.3 metres.**
- Assays from the second drillhole, **25ANDD002**, are pending and are expected to be returned in March and downhole electromagnetic surveys (DHEM) are scheduled to be completed in both holes late January.

Figure 1: 25ANDD001 high grade assay intervals from 313.1 to 316.8 metres

Mineralisation occurs in secondary quartz–carbonate ± chlorite veins containing variable pyrite–chalcopyrite–pyrrhotite. High-grade Au–Cu in fresh bedrock supports a hydrothermal source and suggests continuity at depth, with the targeted IP anomaly aligning with these intersections and warranting further along-strike testing.

Figure 2: Diamond drill hole locations and assay results at the Anabama copper-gold target

2025 Diamond Holes

Drill Target (Chargeability Anomaly)

IP Survey Lines

Historic Copper Workings

Historic Drill Intercepts

- ≥ 2 % Copper
- ≥ 1 % Copper
- ≥ 0.5 % Copper
- < 0.5 % Copper

RHM 575 MAP 01 Vol 1 - EPSG:7854 - 1:500000 AS - 2026/01/23

Anabama Target

The Anabama Target is located on the regionally prospective Anabama-Redan Shear Zone (Shear Zone) which marks the structurally controlled, Northwest-dipping contact of the Benda Siltstone (lower Umberatana Group) with the underlying Boucaut Volcanics. Historic drilling at the target mainly focussed on near surface mineralisation along the shear zone with drilling over approximately a two-kilometre section along strike. Initial IP survey lines² were oriented over this historical drilling³ and showed excellent correlation between areas of elevated chargeability and known mineralisation (Figures 2 and 3). Additional IP survey lines⁴ were then completed along strike to this historic drilling and across the Shear Zone with the IP survey lines highlight a chargeable zone extending across the Shear Zone for over six kilometres of strike, almost triple the target strike length from existing shallow drilling (survey lines C through J shown on Figure 2).

A maiden diamond drilling program was undertaken by Red Hill with two holes completed for a total of 945.5 metres (Table 1). The initial drillhole, **25ANDD001**, completed to a total depth 501.6 metres, was designed to confirm historic results and to target continuation of mineralisation at depth at the main prospect area. Historic results adjacent to **25ANDD001** include (Figures 2 and 3):

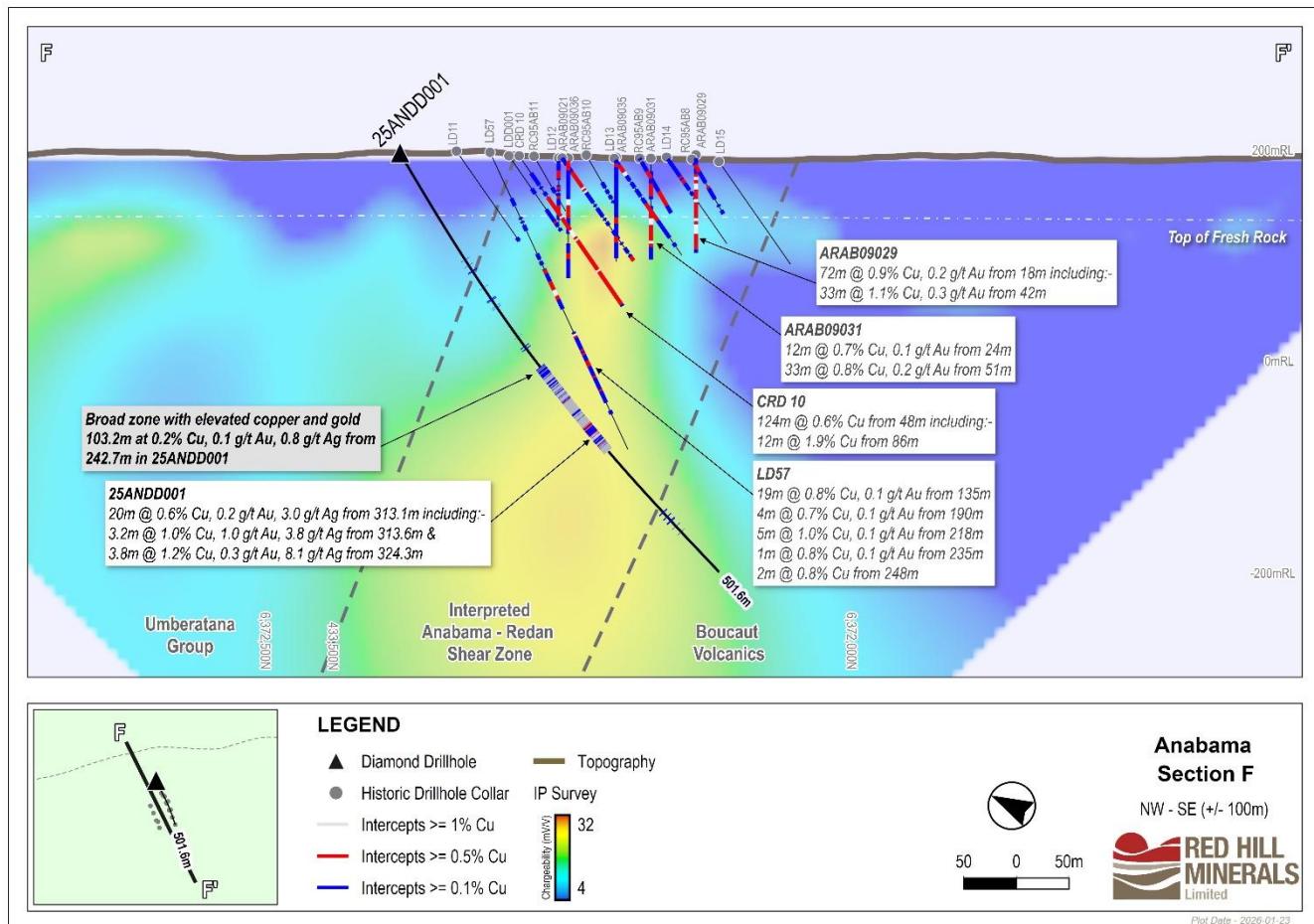
- 72 metres at 0.9% copper with 0.2 g/t gold from 18 metres, including 33 metres at 1.1% copper with 0.3 g/t gold from 42 metres in ARAB09029,
- 12 metres at 0.7% copper, 0.1 g/t gold from 24 metres, and
- 33 metres at 0.8% copper, 0.2 g/t gold from 51 metres in ARAB09031,
- 19 metres at 0.8% copper, 0.1 g/t gold from 135 metres, and
- 4 metres at 0.7% copper, 0.1 g/t gold from 190 metres, and
- 5 metres at 1.0% copper, 0.1 g/t gold from 218 metres, and
- 1 metres at 0.8% copper, 0.1 g/t gold from 235 metres, and
- 2 metres at 0.8% copper from 248 metres in LD57,
- 124 metres at 0.6% copper from 48 metres, including 12 metres at 1.9% copper from 86 metres in CRD10.

Results received from the first hole, **25ANDD001**, confirm historic results and extend mineralisation at depth 130 metres below the historic drillhole CRD10. Best intercepts from **25ANDD001** include:

- **20.0 metres at 0.6% copper, 0.2 g/t gold and 3.0 g/t silver from 313.1 metres, including**
 - **3.2 metres at 1.0% copper, 1.0 g/t gold, 3.8 g/t silver from 313.6 metres, and**
 - **3.8 metres at 1.2% copper, 0.3 g/t gold, 8.1 g/t silver from 324.3 metres.**

A full set of results is available in Tables 2 and 3.

Mineralisation is associated with secondary veining hosting mineral assemblages containing quartz-carbonate +/- chlorite with varying amounts of pyrite-chalcopyrite-pyrrhotite (Figures 1 and 4). High-grade gold and copper samples in fresh bedrock confirm the association of metals with hydrothermal sources, encouraging the interpretation of continuous mineralisation at depth. The targeted IP anomaly correlates with these intersections and warrants further testing along strike.


Chalcopyrite has been observed throughout the hole, however in generally low concentrations. A broader zone of increased quartz-carbonate-chlorite veining between 297 and 348 metres downhole is coincident with a higher observed content of chalcopyrite (Figure 4).

Intersected units of black, graphitic shale with bedding-parallel primary sulphide stringers and secondary sulphide veining were intersected within the Benda Siltstone. Observed dominant sulphides in this unit are pyrite and pyrrhotite which may also be associated with the targeted anomalous bedrock chargeability.

25ANDD001 drilled through the lower extent of Benda Siltstone at approximately 418 metres, intersecting a bleached interval of interbedded volcanics and sediments and entering fresh Boucaut Volcanics at 434 metres.

The hole has successfully drilled through the Shear Zone, tested and extended known mineralisation at depth, confirming a hydrothermal origin of mineralisation, and supports the association of sulphides (primary and secondary) with the identified anomalous bedrock chargeability along this Shear Zone.

Figure 3: Drill hole 25ANDD001 with IP Survey Line F-F', looking northeast, showing historic and recent anomalous copper and gold drilling results over chargeability inversion results and structural setting

Next Steps

Both diamond holes have been cased with PVC for downhole electromagnetic surveying, which is scheduled to commence late January to test for conductors located near drilled collars indicating additional mineralisation and further explain the anomalous IP responses. Further geological review and interpretation will occur as **25ANDD002** assays and the results from the DHEM are received.

This announcement has been approved by the Board of Directors.

Michael Wall
CHIEF EXECUTIVE OFFICER

Figure 4: Diamond Drill Core Photos from 313.1 to 333.1 metres in 25ANDD001

25ANDD001 Diamond Drill Core Photos for:-
20m @ 0.6% Cu, 0.2 g/t Au and 3.0 g/t Ag from 313.1 to 333.1m.

Quartz-pyrite-chalcopyrite-pyrrhotite, crosscut by quartz-carbonate veining.

Table 1: Summary of Drillhole Collars

Hole ID	Target	Hole Type	Eastings	Northings	RL (m AHD)	Dip	Azimuth	Total Depth (m)
25ANDD001	Anabama	DD	433575	6372400	208.23	-60	168.3	501.6
25ANDD002*	Anabama	DD	436182	6373668	197.52	-60	168.3	443.9

Notes: Drillhole co-ordinates are reported using GDA 2020 (MGA Zone 54). *Assays pending.

Table 2: Summary Drill Hole Assay Intersections from 25ANDD001 (Au ≥ 0.1 g/t or Cu ≥ 0.1%)

Depth From (m)	Depth To (m)	Width (m)	Cu (%)	Au (g/t)	Ag (g/t)	Intercept	
118.36	118.66	0.30	0.18	0.02	1.88	0.3m @ 0.2% Cu, 1.9 g/t Ag from 118.4m 0.3m @ 0.2% Cu, 0.3 g/t Ag from 124.8m 1.3m @ 0.1% Cu, 0.2 g/t Ag from 130.8m 0.3m @ 0.1% Cu, 0.1 g/t Ag from 150.2m 2.1m @ 0.1% Cu, 0.1 g/t Ag from 163.0m 0.3m @ 0.2% Cu, 0.1 g/t Ag from 171.2m 0.3m @ 0.2% Cu, 0.1 g/t Ag from 173.0m 0.2m @ 0.1% Cu, 0.3 g/t Ag from 207.1m 0.9m @ 0.2% Cu, 0.2 g/t Ag from 218.0m 0.9m @ 0.3% Cu, 0.7 g/t Ag from 220.5m	
124.77	125.05	0.28	0.22	0.05	0.30		
130.81	132.07	1.26	0.15	0.01	0.17		
150.15	150.45	0.30	0.11	0.02	0.08		
162.94	165.00	2.06	0.13	0.00	0.05		
171.19	171.49	0.30	0.20	0.00	0.10		
173.00	173.33	0.33	0.23	0.00	0.09		
207.12	207.32	0.20	0.15	0.02	0.31		
217.93	218.78	0.85	0.17	0.01	0.19		
220.50	221.42	0.92	0.26	0.01	0.70		
242.66	345.83	103.17*	0.18	0.06	0.77	103.2m @ 0.2% Cu, 0.1 g/t Au, 0.8 g/t Ag from 242.7m	
including	313.10	333.08	19.98**	0.59	0.25	3.01	20.0m @ 0.6% Cu, 0.2 g/t Au, 3 g/t Ag from 313.1m
and including	313.63	316.80	3.17	0.95	1.04	3.82	3.2m @ 1.0% Cu, 1.0 g/t Au, 3.8 g/t Ag from 313.6m
and including	324.26	328.03	3.77	1.19	0.29	8.12	3.8m @ 1.2% Cu, 0.3 g/t Au, 8.1 g/t Ag from 324.3m
	423.21	424.44	1.23	0.16	0.03	0.40	1.2m @ 0.2% Cu, 0.4 g/t Ag from 423.2m
	429.00	430.00	1.00	0.12	0.01	0.17	1.0m @ 0.1% Cu, 0.2 g/t Ag from 429.0m
	433.94	435.50	1.56	0.22	0.01	0.30	1.6m @ 0.2% Cu, 0.3 g/t Ag from 433.9m
	441.52	442.00	0.48	0.10	0.03	0.17	0.5m @ 0.1% Cu, 0.2 g/t Ag from 441.5m
	448.90	449.22	0.32	0.26	0.03	0.18	0.3m @ 0.3% Cu, 0.2 g/t Ag from 448.9m

Notes: Assays rounded to 2 decimal places and intercept labels rounded to 1 decimal place. g/t (grams per tonne).

*Copper (Cu) ≥ 0.1% or Gold (Au) ≥ 0.1 g/t cut-offs used for composite interval reported with no maximum width of internal dilution applied.

Composite interval includes 6.51m of core loss/no assay result where a grade of 0 was applied.

**Copper (Cu) ≥ 0.1% or Gold (Au) ≥ 0.1 g/t cut-offs used for composite interval reported with a 2m maximum width of internal dilution applied.

Composite interval includes 0.09m of no assay result where a grade of 0 was applied. Complete assay results available in Table 3.

Table 3: Raw assays from the 20 metre interval grading 0.6% copper, 0.2 grams per tonne gold and 3 grams per tonne silver from 313.1 to 333.1 metres in 25ANDD001

Depth From (m)	Depth To (m)	Width (m)	Cu(%)	Au (g/t)	Ag (g/t)
313.10	313.63	0.53	0.63	0.17	2.34
313.63	314.07	0.44	2.27	6.45	10.30
314.07	314.67	0.60	0.81	0.09	3.39
314.67	315.50	0.83	0.46	0.04	1.21
315.50	316.52	1.02	0.51	0.08	2.01
316.52	316.80	0.28	2.24	0.99	8.90
316.80	316.89	0.09	NR	NR	NR
316.89	317.25	0.36	0.93	0.05	4.25
317.25	318.29	1.04	0.39	0.07	1.34
318.29	318.93	0.64	0.32	0.04	0.86
318.93	319.41	0.48	0.16	0.02	0.34
319.41	320.00	0.59	0.11	0.00	0.20
320.00	321.00	1.00	0.47	0.05	1.84
321.00	321.80	0.80	0.32	0.04	1.47
321.80	322.80	1.00	0.15	0.02	0.35
322.80	323.42	0.62	0.16	0.03	0.47
323.42	324.26	0.84	0.50	0.06	2.20
324.26	325.05	0.79	1.69	0.71	6.88
325.05	325.44	0.39	0.68	0.15	3.42
325.44	326.00	0.56	1.97	0.49	10.00
326.00	326.45	0.45	0.41	0.03	2.60
326.45	327.00	0.55	1.17	0.03	7.57
327.00	327.63	0.63	0.09	0.01	0.60
327.63	328.03	0.40	2.27	0.37	31.30
328.03	329.10	1.07	0.08	0.01	0.56
329.10	329.80	0.70	0.25	0.04	1.02
329.80	330.70	0.90	0.32	0.03	1.46
330.70	331.05	0.35	1.08	0.10	6.33
331.05	332.00	0.95	0.26	0.06	1.06
332.00	333.08	1.08	0.25	0.05	0.98

Notes: Assays rounded to 2 decimal places and intercept labels rounded to 1 decimal place. g/t (grams per tonne). NR - no result.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data.

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	<p>Diamond drilling was used to obtain samples for geological logging and assaying. Diamond core was cut and sampled at 1m intervals on average or intervals determined by geological contacts.</p> <p>Sample weight, quality, collection method and condition are logged at the time of collection and reported with the available data.</p> <p>Multi-element readings were taken of the diamond core using a portable XRF machine, Bruker S1 Titan 800. Portable XRF machines are routinely serviced, calibrated and checked against blanks/standards.</p> <p>Gold and base metal analyses were completed at ALS Wangara, Western Australia following sample preparation at ALS Adelaide, South Australia. Analyses used a combination of gold by fire assay fusion followed by ICP-AES (Au- ICP21) and multi-element Ultra-Trace Four-Acid Digestion with ICP MS and ICP-AES (ME- MS61).</p> <p>Ore grade analysis for overlimit Cu was completed using HF-HNO₃-HClO₄ Digest, HCl leach and ICP-AES (Cu- OG62).</p> <p>Ore grade analysis for overlimit sulphur using oxidation, induction furnace fusion digestion and infrared spectroscopy (S- IR08)</p> <p>Overlimit analysis for zirconium by lithium borate fusion with ICP-MS finish (Zr- MS85)</p>
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<p>Diamond drilling utilised HQ, HQ3 and NQ2 sized coring equipment.</p> <p>Orientations on the core were attempted every run where possible using an appropriate Axis Champ orientation tool.</p>
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures are taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<p>Sample recovery / core loss was recorded by the drill crew in the field at the time of drilling and checked by a Geologist or Field Technician during logging.</p> <p>No association between lessened core recovery and mineralised zones has been established at this time.</p> <p>Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking and depths are checked against the depths recorded on core blocks.</p> <p>Rod counts are routinely undertaken by drillers and drill plods are also used as a cross check of activity.</p> <p>When poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery.</p>
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>All core samples are geologically logged for the entire length of the drillhole. Core samples are orientated and logged for geotechnical information.</p> <p>Logging is both qualitative and semi-quantitative in nature. Logging records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other features of the samples.</p> <p>All core obtained from the drilling is photographed as both wet and dry.</p> <p>No Mineral Resource estimate is being reported.</p>
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise the representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the 	<p>Drill core was logged on site before being transported to a service yard where it was cut with a core saw and half core samples taken. Samples were transported from the service yard directly to the laboratory.</p> <p>Methodology for all sample prep was recorded in the geological database. Laboratory sample prep techniques were carried out by ALS Laboratory Services and are considered appropriate for the sample type:</p> <ul style="list-style-type: none"> CRU-21 (Sample preparation code – primary crush) PUL-23 (Sample preparation code - pulverising) <p>Certified reference materials (CRM) were inserted by the lab while duplicates were collected by the lab on Company selected intervals after</p>

Criteria	JORC Code explanation	Commentary
	<p><i>material being sampled.</i></p> <ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p>crushing. These were done at an approximate rate of one in 50 samples each.</p> <p>ALS Laboratory Services were used for gold and multi-element analysis work carried out on half core samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation:</p> <ul style="list-style-type: none"> • Au- ICP21: Au 30g fire assay fusion with ICP-AES • ME- MS61: 48 element 4-acid digest with ICP-MS and ICP-AES <p>Some samples were selected for additional analysis using the following methods as required. These techniques are also considered appropriate for the style of mineralisation:</p> <ul style="list-style-type: none"> • OG62: Ore grade analysis for overlimit analytes completed using HF-HNO3-HClO4 Digest, HCl leach and ICP-AES (Cu- OG62) • S- IR08: Ore grade analysis for overlimit sulphur using oxidation, induction furnace fusion digestion and infrared spectroscopy • Zr- MS85: Overlimit analysis for zirconium by lithium borate fusion with ICP-MS finish <p>Laboratory QAQC data is requested by the company as part of QAQC processes. Crush duplicates were collected by the lab and certified reference material (CRM) data inserted by the lab with drill samples. These were done at an approximate rate of one in 50 samples each.</p> <p>Assaying of samples in the field was by Bruker S1 Titan 800portable XRF instrument (pXRF). Reading time for the pXRF was 20 seconds per beam with 3 beams utilised. Results were used for field reference only and are not being reported.</p>
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustments to assay data.</i> 	<p>Reviews of logging through mineralised zones are carried out by Company Geologists and contractors to try and identify mineralisation characteristics with various tools available onsite to assist (UV light, pXRF, magnetic susceptibility).</p> <p>Diamond hole was planned to twin historic intersection though drillhole itself is not a true twin of historic drillhole. Twin holes are not required at this early stage.</p> <p>Geological data is collected via a custom-built drilling Geology and Sample Logger program. Validation checks are carried out on the data and the data reviewed after results are received by the Senior GIS and Database Geologist in the Red Hill Minerals Perth office. Procedures for data collection are shared with personnel on site.</p> <p>Assay data results are sent electronically in csv and pdf format from the laboratory to the Company and stored in a secure database that is backed up regularly.</p>
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<p>All drill holes are initially surveyed by handheld GPS.</p> <p>Drill hole collar coordinates were verified in GIS utilising aerial photography and track file data as part of QA/QC procedures.</p> <p>Downhole surveys were completed using a gyroscope at regular intervals down hole for each hole drilled.</p> <p>Company projects fall within the MGA Zone 54 (GDA 2020 based) for horizontal data and AHD for vertical data.</p> <p>No Mineral Resource estimate is being reported.</p>
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<p>Drilling is considered early stage and spacing is variable due to the proof of concept / first pass assessment of the targets being reported.</p> <p>Drill data spacing and distribution is not sufficient to establish a Mineral Resource estimate.</p> <p>Drill hole compositing has not been applied to results reported.</p>
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have</i> 	<p>Most drillholes are planned to intersect the interpreted mineralised structures/lobes as near to a perpendicular angle as possible (subject to access to the preferred collar position). In areas of cover and little to no previous drilling, strike orientations were assumed.</p> <p>Drillhole deviation may affect the true width of mineralisation and will be</p>

Criteria	JORC Code explanation	Commentary
	<i>introduced a sampling bias, this should be assessed and reported if material.</i>	assessed as further drilling occurs.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<p>Drill core was transported from the drill site to a logging shed by LV where they were kept onsite under the supervision of a Geologist until transported to a service yard for cutting and sampling. Samples were transported from the service yard directly to the laboratory.</p> <p>Sampling information is tracked by the Senior GIS and Database Geologist in the head office.</p>
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	Data is validated when loading into the database. No formal external audits or reviews on the data have been completed.

Section 2 Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	The drillholes reported in this announcement are located on Peel Far West Pty Ltd tenure that Silverton Minerals Pty Ltd, a subsidiary of Red Hill Minerals Limited, is earning up to 75% in by spending \$6.5M within 5 years. There are no known impediments to operate in the area. All tenements are in good standing.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	Previous explorers over the Anabama Project, including Carpentaria Exploration Co Pty Ltd, Placer Exploration Ltd and Diatreme Resources Limited, concentrated on the volcanic associated copper(-gold) mineralisation present at the Anabama and the White Rocks prospects.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<p>The Anabama Project is located in eastern South Australia about 140km southwest of Broken Hill, NSW, within the Olary Province. The project contains the bimodal Boucat Volcanics which host the Anabama and White Rocks historical copper workings and part of the NE-SW trending Anabama-Redan shear zone, which separates the Boucat Volcanics from the Umberatana Group sediments. The southern part of the project is covered by Murray Basin sediments which are considered prospective for accumulation of heavy mineral sands.</p> <p>All relevant drill-hole information can be found in the JORC Table Section 1 – “Sampling techniques”, “Drilling techniques”, “Drill Sample Recovery” and the drilling collar and significant intercepts tables included within the body of this release.</p>
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<p>Reported intercepts for the targets discussed in this report are based on the following:</p> <p>≥0.1 g/t Au or ≥0.1% Cu with no maximum width of internal dilution applied.</p> <p>No upper cuts have been applied.</p> <p>No metal equivalent values are used.</p> <p>Intervals are weighted based on their downhole length.</p> <p>Refer notes in Tables 1 – 3 for more information.</p>
Relationship between	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> 	Quoted mineralised intercepts are downhole lengths, true widths are not yet

Criteria	JORC Code explanation	Commentary
mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	known at this early stage of exploration.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	Refer to figures in the body of text.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<p>In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide and oxide material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available.</p> <p>The accompanying document is considered to be a balanced report with a suitable cautionary note.</p>
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	No other material information or data to report.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	Downhole EM (DHEM) surveys have been scheduled and drilling results will be used to assist with planning future exploratory work at the project area.

Competent Person Statement

The information in this report that relates to data and exploration results is based on information compiled by Mr Matthias Michel, Exploration Manager, Red Hill Minerals Limited who is a Member of the Australian Institute of Mining and Metallurgy. Mr Michel is a full-time employee of Red Hill Minerals Limited. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined by the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Michel consents to the report being issued in the form and context in which it appears.

Where reference is made to previously reported exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

¹ Refer ASX: RHI announcement dated 5 July 2024 "Binding Heads of Agreement expands Red Hill's exploration into the Broken Hill and Olary regions of NSW and SA".

² Refer ASX: RHI announcement dated 28 July 2025 "Induced Polarisation Survey Highlights 4km Strike Potential at the Anabama Copper-Gold Target".

³ Refer ASX: RHI announcement dated 1 October 2024 "Curnamona Earn-In JV Exploration Update".

⁴ Refer ASX: RHI announcement dated 18 August 2025 "Further induced polarisation survey lines extend strike potential at the Anabama copper-gold target to 6km".